Bifurcations / Hysteresis

Saddle-node bifurcation: (fold bifurcation)

\[\frac{dx}{dt} = r + x^2 \]

- \(r < 0 \):
 - Stable
 - Unstable

- \(r = 0 \):
 -\(x = \pm x \)

- \(r > 0 \):
 - No solutions

\(\frac{dx}{dt} = 0 \)

\(r = -x^2 \)

\(r > 0 \Rightarrow \) no solutions \(\frac{dx}{dt} = -x \)

\(r < 0 \Rightarrow \) \(x = \pm x \)

Fixed points are created and destroyed as \(r \) is varied.

\(r \sim \text{Degradation rate} \)

\(\text{Binding affinity} \)

\(\text{Salt concentration} \)

Transcritical bifurcation:

\[\frac{dx}{dt} = r x - x^2 \]

- \(r < 0 \):
 - Stable
 - Unstable

- \(r = 0 \):
 -\(x = \pm x \)

- \(r > 0 \):
 - No solutions

\(\frac{dx}{dt} = 0 \)

\(r = x \)

\(r < 0 \Rightarrow \) \(x = \pm x \)

Exchange of stabilities

\[\frac{dx}{dt} = -r x - x^2 \]
Pitchfork Bifurcation (supercentral)
\[\frac{dx}{dt} = rx - x^3 \] (invariant under \(x \to -x \))

Fixed Points appear/disappear in symmetrical pairs

Critical slowing down

\[0 = rx - x^3 \]
\[r = x^2 \]
\[x = \sqrt{r} \]

Exploding instability

Computer example:
\[\frac{dx}{dt} = rx + x^3 \] (itself not)

\(r \leq 0 \) unstable
\(r = 0 \) stable
\(r > 0 \) unstable

Hysteresis