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Deciphering the design principles for regulatory networks is fun-
damental to an understanding of biological systems. We have
explored the mapping from the space of network topologies to the
space of dynamical phenotypes for small networks. Using exhaus-
tive enumeration of a simple model of three- and four-node
networks, we demonstrate that certain dynamical phenotypes can
be generated by an atypically broad spectrum of network topol-
ogies. Such dynamical outputs are highly designable, much like
certain protein structures can be designed by an unusually broad
spectrum of sequences. The network topologies that encode a
highly designable dynamical phenotype possess two classes of
connections: a fully conserved core of dedicated connections that
encodes the stable dynamical phenotype and a partially conserved
set of variable connections that controls the transient dynamical
flow. By comparing the topologies and dynamics of the three- and
four-node network ensembles, we observe a large number of
instances of the phenomenon of “mutational buffering,” whereby
addition of a fourth node suppresses phenotypic variation
amongst a set of three-node networks.

designability | dynamical phenotype | enumeration | mutational
buffering | regulatory network

D iscerning the structure and function of cellular networks is
essential to the development of a true understanding of
biological systems. Experimental and theoretical studies are steadily
advancing our knowledge of the wiring and input—output charac-
teristics of a variety of natural and designed biological networks.
These efforts have focused on characterizing the components and
interactions for specific biological networks and their dynamical
behaviors, by using standard genetic and biochemical approaches in
conjunction with mathematical analysis of discovered circuits (1-7).
Valuable insights into certain design features of biological networks
have emerged through these efforts (8—13) and are used to guide
the design of synthetic systems (14-16). The choice of which
synthetic circuits to build is often a matter of careful hand-picking
guided by experimental restrictions.

Reverse-engineering and modeling of specific experimental sys-
tems on a case-by-case basis is necessary and meritorious. However,
the space of networks and associated dynamics is potentially very
large, and parallel approaches that consider broad ensembles of
networks may advance our understanding of general design prin-
ciples in ways that the serial strategies may have difficulty revealing.
Therefore, we have chosen to explore general design principles by
using a global strategy. We expect that exploration of an entire
ensemble of networks and associated dynamics will reveal statistical
signatures connecting network architectures to categories of dy-
namical phenotypes. In particular, we analyze the relationship
between the space of topology and the space of dynamics by
employing an analogy to the protein “designability principle,” which
states that compact protein structures that can be encoded by a wide
array of sequences are preferentially selected in nature (17, 18).

Although the “designability principle” was originally proposed in
the context of proteins (17-19), the concept is not limited to protein
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Fig. 1. Schematic mapping of designability for networks. The upper dynam-
ical profile, a limit cycle that oscillates through the four states 100, 110, 111,
and 101, possesses a designability of two in this mock example because the
two upper left networks encode it. However, the lower dynamical profile
arises from only one network, yielding a designability of one.

sequence structure relationships. In the most general setting, des-
ignability can be defined as the number of genotypes (i.e., se-
quences) that give rise to the same phenotype (i.e., structure). Here
we explore such a generalization of the “designability principle” to
biological networks, by defining the wiring diagram of node con-
nections as the genotype that encodes the network’s dynamical
output, i.e., its phenotype (Fig. 1). By using a simplified network
model, we enumerated the entire space of network topologies and
associated dynamical phenotypes. Certain dynamical phenotypes
emerged as highly designable in that they can be encoded by a large
number of network topologies. Comparison of networks of differ-
ent size revealed many instances of the biological phenomenon of
“mutational buffering,” whereby addition of a fourth node sup-
presses phenotypic variation among a set of three-node networks.

Results

We adopt a simple Boolean model in search of general principles
that govern the structure and behavior of small, three- and four-
component networks. Network nodes represent discretized biolog-
ical entities (MRNA, protein, etc.) that can be either on (1) or off
(0), and the network connections represent regulatory relationships
between the nodes. The state of a node evolves at discrete time steps
according to the inputs from the other nodes and specific updating
rules (see Methods for model description). We have sacrificed
model complexity to permit exploration of an exhaustive ensemble
of small networks, some of which may comprise modules of real
biological circuits. We focus on three- and four-node networks
because they are amenable to study by exhaustive enumeration in
the context of our model and because reasonable evidence exists
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Fig. 2. Phase space flow. The phase space for the four-node network
depicted by using rule one. Green arrows, activating; red arrows, inhibitory.
Binary string bits (left to right) represent the states of node one to four,
respectively. We observe a 5-cycle with one transient (1111), a 3-cycle with two
chained transients (1110, 1101), an isolated 2-cycle, a fixed point with one
transient (1011), and a lone fixed point. Because the model contains no basal
synthesis term, the state St = (0,0,0,0) is always a fixed point. There are a total
of 24 = 16 states.

that biological circuits are comprised of small network modules
linked together (20, 21).

In the network setting, one must define a metric to properly
compare phase spaces. The spectrum of limit cycles and/or fixed
points within phase space characterizes a network’s stable behavior
and thus defines its primary phenotype. Therefore, in our design-
ability analysis we focus our attention on the presence of individual
limit cycles and fixed points. We address the transient dynamics,
which represent a compelling but secondary phenotype, later in
Results. We define the “designability” of a dynamical phenotype,
either a limit cycle passing through a specific series of states or a
particular fixed point, as the number of topologies that contain that
phenotype within the topology’s dynamical phase space. For in-
stance, in Fig. 2, the depicted network encodes a limit cycle
containing five states (0001 — 0010 — 1001 — 0111 — 1010); thus,
this particular network contributes one to the designability of the
S-cycle. Another closely related topology (not shown) encodes the
same 5-cycle; hence, we would increment this 5-cycle’s designability
to two. We continue adding one to the designability of this 5-cycle
for each network in the four-node ensemble that generates the
5-cycle and the total counts after we have enumerated all possible
networks gives the designability of the 5-cycle. For 3-cycles and
higher, we treat opposing temporal orientations of limit cycles as
distinct phenotypes.

Table 1. Coarse-grained phenotype analysis

Theoretical pool of possible

k-cycles that occur

Overview of Dynamical Phenotypes. Table 1 summarizes the scope
of dynamical phenotypes that our exhaustive network enumeration
captures. Here we report only the phenotypic coverage for the n =
3 and n = 4 ensembles when measured against the theoretical pool
of possible k-cycles. We observe that for two different updating
rules corresponding to different decay processes (see Methods for
rule descriptions), as the cycle complexity (measured by increasing
k) rises, the ratio of k-cycles that can be designed by at least one
topology to the number of theoretically possible k-cycles falls
sharply (see also Fig. 34). This observation draws our attention to
the intermediate phenotypes that are neither excessively rare nor
excessively simple. Such phenotypes exhibit the greatest phenotypic
variation (k = 4, 5,6, and 7 forn = 4;and k = 2, 3, and 4 forn =
3). We find that under rule two a smaller fraction of dynamical
phenotypes are designable by at least one topology. The last two
columns indicate that for » = 3 and n = 4 up to S-cycles, the
phenotypic coverage for rule two is a complete subset of the
phenotypic coverage corresponding to rule one. However, for
6-cycles and higher, the increased complexity of the n = 4 ensemble
yields a small fraction of phenotypes that are unique to rule two.

Whereas similar trends between the phenotypic coverages
suggest a reasonable correlation between the two updating rules
for both n = 3 and n = 4, it is an appreciable correlation of
designabilities that confirms that the two rules are statistically
equivalent. We performed a correlation analysis by registering
the designability scores for each phenotype reported in Table 1
(see Fig. 8, which is published as supporting information on the
PNAS web site). The correlation is highly significant as judged
by linear regression (R?> = 0.836). Although the microscopic
rank-ordering of designabilities differs somewhat under each
rule (data not shown), we conclude that for the phenotypes
which arise under both rules, the strong, intermediate, and
weakly designable phenotypes emerge consistently.

Certain Dynamical Phenotypes Are Highly Designable. We now de-
scribe results from a more detailed analysis. Given the macroscopic
equivalence of rules and the peak in phenotypic variation for the
intermediate-sized limit cycles, we focus on rule one for the
remainder of this paper and intermediate k-cycles for four-node
networks. Qualitatively similar results were obtained for three-node
networks (data not shown). Fig. 34 plots average designability
against cycle size, indicating that designing larger cycles is expo-
nentially hard (Fig. 34, red line). When phenotypes that cannot be
designed at all by our model are excluded from the average (Fig. 34,

k-cycles that occur k-cycles that overlap

k-cycles under rule 1 under rule 2 rules 1 and 2
k n=4 n=3 n=4 n=3 n=4 n=3 n=4 n=3
10 1,089,728,640 (%) 48 [%) 72 (%) 24 (%)
9 201,801,600 %] 192 %] 0 %] 0 %]
8 32,432,400 %) 1,476 %] 486 %] 390 %]
7 4,633,200 720 3,600 0 1,176 0 983 0
6 600,600 840 6,776 2 2,020 2 1,900 2
5 72,072 504 5,688 12 1,776 6 1,776 6
4 8,190 210 2,730 24 1,158 18 1,158 18
3 910 70 668 34 404 10 404 10
2 105 21 105 21 77 12 77 12
1 16 8 16 8 16 8 16 8

Theoretical counts of the total number of possible k-cycles compared with k-cycles that can be designed by at least one topology for
rule one, rule two, and both rules. No k-cycles larger than 10 occur in the n = 4 ensemble. The symbol & indicates that k-cycles 8, 9, and
10 are a priori mathematically impossible for n = 3 because there are only 23 states and the fixed point St = (0,0,0,0) cannot participate

in a limit cycle. Theoretical counts were computed according to the formula
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blue line), the average designability is bounded from below by one
and the behavior becomes subexponential.

Fig. 3 B-D depict designability spectra for 4-, 5-, and 6-cycles,
respectively. Gauging from Fig. 34, the average designabilities
decrease rapidly as the length of the k-cycle increases. Therefore,
it is necessary to distinguish bulk designability scalings that arise
from mere cycle complexity from designabilities that reflect the
underlying structure of the dynamical phenotypes. We therefore
segregated the cycle sizes into independent plots to compare limit
cycles of equal complexity.

Each inset in Fig. 3 displays the full designability spectrum in a
semilog graph in which the light-gray portion of the spectrum,
corresponding to the 20 most designable k-cycles, is expanded in the
main plot. Such “highly designable” phenotypes substantially ex-
ceed the mean designabilities (Fig. 3 Insets, horizontal red lines) of
322.4, 35.6, and 10.7 for the 4-, 5-, and 6-cycles, respectively. In
contrast, for each k-cycle, we observe a long tail indicated by the
black portion of the inset spectrum that is comprised of weakly
designable phenotypes.

The designability spectra are highly nonrandom. To illustrate,
among the 5-cycles, the probability of observing the top-ranking
designability of 810, assuming that designabilities are governed by
a Poisson process with mean 35.6, is 1.32 X 107793 (see Fig. 9, which
is published as supporting information on the PNAS web site). The
emergence of strongly preferred dynamical phenotypes against a
wide background of less successful ones suggests that a “design-
ability principle” may be operative for networks.

Topological Variability: Two Case Studies. What dynamical features
lead to the success of these highly designable dynamical phenotypes,
and what are the characteristics of the underlying topologies of the
corresponding networks? Although we cannot give insights into
every phenotype and its associated topologies, we present as case
studies two highly designable examples.

We examined the variability of each topological connection for
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a set of networks that design a given phenotype. Specifically, using
the connectivity matrix to represent the topology, we counted the
number of activating, inhibitory, and neutral links for each matrix
position across the set. We discovered two classes of connections:
fully conserved and variable. The fully conserved connections
correspond to a subnetwork module that is necessary to encode the
designable, stable phenotype. The variable connections control the
transient dynamical flow. The partitioning of connections into a
fully conserved core and a variable set may suggest a framework for
understanding the mapping from topological space to dynamical
space.

Fig. 4 A and D each depict an example of topological variability.
Vertical bars of a single color correspond to fully conserved
positions of the connectivity matrix. Fig. 44, for instance, depicts
the topological variability for a highly designable 4-cycle phenotype
whose dynamics are illustrated in Fig. 4C. There are 6 fully
conserved positions (four activating, one inhibitory, and one neu-
tral) and 10 variable positions that display biases for particular link
types, variations that collectively give rise to 2,500 topologies. We
observe moderate dependencies among the choices at the 10
variable positions: if the selections at each variable position are
independent, one should observe 2° X 3% or 5,184 networks, yet only
2,500 occur.

The fully conserved activating links generate a cascading pattern
of node activations: node four turns on node three, which in turn
switches on node two, which finally turns on node one and the cycle
repeats (Fig. 4C, light-gray portion). The cascade is reinitiated by
node four at every other time step because there is a bidirectional
activation between nodes three and four. Furthermore, the class of
networks presented in this example possesses one specialized
connection: a fully conserved inhibitory link from node one to node
two. Therefore, the attempt to generate a full cascade originating
from node four falls silent at node two half of the time, leading to
off spans for nodes one and two that are 3-fold longer than those
for nodes three and four.

Nochomovitz and Li
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Fig. 4. Topology variability analysis. (A) Highly designable 4-cycle (236 11).
(D) Highly designable 5-cycle (2 3 5 9 10). (B and E) Network diagrams
displaying only the fully conserved positions of the connectivity matrix. Green,
activating; red, inhibitory; white, neutral. (C and F) Dynamics for two oscilla-
tions (second oscillation in gray) of each limit cycle.

Fig. 4 D-F depicts another highly designable dynamical pheno-
type, a 5-cycle that generates an uninterrupted cascade. Here the
fully conserved core uses four specialized links to produce a
different modulation of a cascading pattern of node activations. The
autoactivating link on node one, the activation from node one to
node four, and the two inhibitory links act in concert to keep nodes
one and four on twice as long as nodes two and three. In this
circumstance, there are no dependencies at the variable positions
because the designability is precisely 256. Weakly designable dy-
namical phenotypes necessarily possess a greater fraction of fully
conserved connections and contain increasingly idiosyncratic fea-
tures that belie straightforward categorization (see Fig. 10, which is
published as supporting information on the PNAS web site).

Designability Is Independent of Robustness. Each stable phenotype
possesses a basin of attraction: the collection of all transient states
that flows toward the stable phenotype. The size of the basin of
attraction combined with the size of the k-cycle measures a stable
phenotype’s robustness to environmental perturbations. The cor-
relate of robustness for proteins is thermodynamic stability. For
protein designability on lattices, one can frame a geometric argu-
ment for the positive correlation between highly designable folds

Nochomovitz and Li
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Fig. 5. Designability and the average size of the basin of attraction are
uncorrelated. The analysis was performed for the 2,730 4-cycles arising from
four-node networks under rule one.

and thermodynamic stability (18). We were curious to know
whether an analogous correlation holds between robustness and
designability in the network setting.

We performed a correlation analysis between a phenotype’s
designability and the average size of that phenotype’s basin of
attraction (Fig. 5) and discovered no significant correlation. The
absence of a correlation holds true for all k-cycles under either
updating rule for both the n = 3 and n = 4 ensembles (data not
shown). This result may reveal an interesting deviation from the
designability conclusions for proteins.

Mutational Buffering. We conducted a systematic exploration of the
interplay between the mappings from topological to dynamical
space for the three- and four-node network ensembles. Our moti-
vations for this analysis are drawn from the genetic concept of
mutational buffering. Mutational buffers assist in preserving a
common phenotype by suppressing the phenotypic effect of genetic
variations. We therefore searched for circumstances where the
incorporation of a fourth node bearing specific connections to a set
of genetically distinct three-node networks would trigger the three-
node networks to acquire the same dynamical phenotype, despite
possessing differing dynamical phenotypes as isolated three-node
systems.

To investigate this idea, we systematically searched the four-node
k-cycle and 2k-cycle dynamics for matches (on three of the four
nodes) to k-cycles generated by three-node networks, holding k
fixed for any particular search (2k-cycles are included because they
could possess embedded k-cycles orbiting twice on three of the four
nodes). We then imposed the criterion that the fourth node
demonstrate a fixed set of connections, i.e., a scaffold, with respect
to the original three-node network. We also fixed the identity of the
fourth node’s self-coupling (only activating, only inhibitory, or only
neutral) and demanded that the fourth node’s dynamics display
activity, i.e., not trivially off. Therefore, for any particular scaffold,
the fourth node exhibits a specific and active functional role. For
each scaffold identified, we divided the number of four-node
networks that design the k-cycle using the specified scaffold by the
number of three-node networks in isolation that also design the
k-cycle. The quotient measures designability amplification, or buff-
ering strength (Fig. 6, x axis).

In Fig. 6 we report the results of the systematic search for 4-, 5-,
and 6-cycle scaffolds. Amongst these k-cycles, we observe 1,356
instances of the scaffolding phenomenon with an average buffering
strength of 3.63. Most scaffolds confer buffering strengths in the
lower ranges. However, we also discovered instances of high
buffering strengths, for example an amplification of 35 for one
5-cycle.

To portray a simple example, we examine in detail the unique
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Fig. 6. Systematic search for mutational buffers. A scaffold refers to a fixed
manner by which a fourth node interacts with a three-node subnetwork.
Buffering strength reports the ratio of designability of a dynamical phenotype
observed on three-node subnetworks attached via scaffold to a fourth node,
to that phenotype’s designability on isolated three-node networks. The black
arrow points to the example portrayed in Fig. 7. Dynamics were generated by
rule one.

6-cycle scaffold that possesses a buffering strength of 11 (Fig. 6,
black arrow). The network at the upper left of Fig. 7 is the only
member of the three-node ensemble that can design the shifted
“three-on/three-off” pattern of node activities shown in the dy-
namical profile for nodes one, two, and three appearing at the top
of Fig. 7. However, by incorporating a fourth node (Fig. 7, yellow
node) that interacts with each original node via bidirectional
activations, 11 unique four-node networks arise that support the
shifted “three-on/three-off” dynamics of the isolated three-node
network.
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Fig. 7. A mutational buffer in action. The three-node network at the upper
left encodes the 6-cycle phenotype shown above (for nodes one, two, and
three) that possesses a designability of one. The fourth yellow node interacts
with the original three-node network in a fixed manner via three sets of
bidirectional activations. By virtue of these interactions, 11 four-node net-

works can now confer the 6-cycle phenotype to nodes one, two, and three,
resulting in a buffering strength of 11 (Fig. 6, black arrow).
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Ten of these subnetworks, in isolation, would be unable to
support the dynamical profile of the original three-node network
[the 11th subnetwork (lower right in Fig. 7) is identical to the
original three-node network]. The incorporation of a fourth node
buffers the subnetworks’ internal variations, restoring their capacity
to produce the dynamics of the isolated three-node network. The
“buffering” node requires a unique dynamical signal, oscillating at
three times the frequency of the nodes in the subnetwork (Fig. 7,
dynamics profile for node 4) to compensate in a consistent manner
for the alternate wirings of the subnetworks. The buffer elegantly
restores bridging communication between nodes in the three-node
subnetworks whose direct activating links have been mutated away
when compared with the original three-node network (Fig. 7, upper
left).

Discussion

We have conducted an exhaustive computational analysis of the
mapping from topological to dynamical space for a simplified
network model that abstractly mimics elements of biological reg-
ulatory networks. Our investigation complements theoretical stud-
ies that eschew direct enumeration in favor of providing certain
analytical insights into the connections between network topology
and dynamics (22-24).

Our principal conclusion is that a small fraction of dynamical
phenotypes possesses atypically high designabilities. This finding
conceptually parallels the protein case, where a small subset of folds
in simple two- and three-dimensional enumerative models pos-
sesses unusually high designabilities (17-19). Highly designable
dynamical phenotypes arise via the presence of a core of fully
conserved network links. The design of the core is effective because
the core is relatively small but can tolerate wide variations in the link
identities at the residual nonconserved positions while keeping the
encoded stable phenotype intact. The presence of a conserved
network core corresponds conceptually to protein designability,
where a subset of essential residues defines the fold and variations
at the nonessential residues absorb a large spectrum of sequences
(17-19). Despite these observations, we still seek a general theo-
retical understanding of the topological features of the conserved
network cores that enable them to yield highly designable dynamical
phenotypes.

The variable links determine the pathways of the transient states
to the stable phenotypes and modulate the stable phenotypes’
robustness to environmental perturbations. Therein lies a superfi-
cial correspondence to proteins, in that the variable residues
specialize details of the folding pathway and/or confer differential
stabilities to equivalent folds. However, unlike proteins, where a
correlation exists between stability and designability, no such
correlation was observed between the stability of a dynamical
phenotype (as measured by the size of the basin of attraction) and
its designability in our network model. In contrast, it seems that the
structure of the dynamical phenotype itself, rather than the phe-
notype’s capacity to accommodate a large collection of transient
states, contributes principally to high designability.

We have also shown that a Boolean model can provide mecha-
nistic insight into how dynamical buffering may arise. Our system-
atic comparison of the three- and four-node ensembles’ topologies
and dynamics lends direct theoretical support to the possibility that
similar dynamical phenotypes occurring in gene regulatory net-
works of different strains may be preserved via mutational buffers.
We discovered that dynamical buffering could exhibit complex,
nonintuitive features, demonstrating that the adoption of enumer-
ation methodologies to probe design principles of biological net-
works is useful in revealing designs that may not be found by
intuition. Other computational investigations into the buffering
phenomenon (25, 26) have yielded related conclusions but provided
no detailed mechanistics into the action of identified buffers.

Mutational buffering is common in biology (27, 28). The prospect
that buffering could provide a measure of phenotypic robustness to
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internal genetic variation amongst different strains through intri-
cate dynamical relationships could expand the view of mutational
buffering as a phenomenon traditionally attributed to static genetic
dominance or redundancy. A buffer acting to suppress phenotypic
variation through specific dynamical relationships to other genes is
an interesting prediction that could be tested experimentally.
Although we could only portray one example in Results, we have
elucidated >1,000 buffering scaffolds for small, experimentally
accessible four-node systems. For each scaffold, we have produced
a complete map of the spectrum of genetic variation that the
scaffold suppresses, the phenotype that the scaffold preserves, and
the dynamical behavior of the scaffolded buffer itself. These
examples can be used to guide the selection and design of specific
networks to test the idea of mutational buffering via intricate
dynamic regulation (14).

There are advantages and limitations to Boolean modeling. The
simplicity of a Boolean model allows us to enumerate the full space
of topology and dynamics, which leads to observation of phenom-
ena (such as the existence of highly designable dynamical pheno-
types and mutational buffers) that are impossible to reveal by case
studies. In certain instances, Boolean modeling accurately recapit-
ulates the features of dynamical processes observed by using
differential equations that represent plausible biological regulatory
mechanisms. For example, we have demonstrated (see Fig. 11,
which is published as supporting information on the PNAS web site)
that the networks portrayed in Fig. 7 possess Boolean dynamics with
the same phase-shifted oscillations and frequency ratios that arise
when the dynamics are controlled by differential equations. In other
circumstances, the Boolean approach suffers from nonphysical
artifacts that are detected by continuous models (29).

Our designability study for networks will guide experimentalists
and theorists toward consideration of statistically preferred dynam-
ical outputs in addition to analysis of statistically overrepresented
network motifs (20). Although the results we presented here are
limited to toy models, we anticipate that the concepts of design-
ability of dynamical phenotypes and mutational buffering will
become valuable in understanding the design of real biological
networks.

Methods

We define a network topology according to an n x n connectivity
matrix, C. Each matrix element Cj; represents the connection from
nodej to node and is chosen from the set {—1, 0, 1}, corresponding
to inhibition, neutral, and activation. The model hence permits
bidirectional links, autoactivations, and autoinhibitions. For a net-
work of n nodes, the model yields 3"* networks upon exhaustive
enumeration of topologies (n = 3, 3° = 19,683; n = 4, 310 =
43,046,721). We implement the analytic power of the Pélya enu-
meration theorem to generate an exhaustive set of nonisomorphic
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graphs (see Supporting Text, which is published as supporting
information on the PNAS web site). After pruning isomorphic
graphs, we are reduced to 3,411 (n = 3) and 1,809,459 (n = 4)
unique topologies.

We use a relatively simple procedure to explore the dynamical
behaviors of a large ensemble of networks. For each discrete time
point ¢, the state of each node i, denoted S}, can be either 1 (on) or
0 (off). The input to each node is given by - ,C;S]. The
assignment of the next state S**! is then determined by the net
input: $°*! is mapped to one for net activation and zero for net
inhibition. The nodes are synchronously updated at each time step.
In the cases where the net input to a node is zero, we consider two
updating rules, §; and J,. Under rule one (), the state of a node
presented with a zero net input at time ¢ decays to zero or remains
zero at time ¢ + 1. Under rule two (), the state of a node
presented with a zero net input at time # retains its previous state.
The two rules are summarized as follows:

1 2G>0
Justi=f Y [1]
1- 9 0 21: CUS][ = O
J=Ln
1 }1) CySt>0
J=Ln
%2: S;+1 — 0 /:EInC,}S]l < 0 [2]
s 56sj-0

The physical interpretation of J; is that the time scales of the
decay process and the activating or inhibitory processes are of equal
order. The physical interpretation of 35 is that the decay process
occurs on a much slower time scale than the activating or inhibitory
processes.

To calculate a network’s phase space, we compute the successor
state for each of the 2" initial conditions and employ a graph-
searching algorithm to deduce the cycle decomposition and tran-
sient flow (30). The space of dynamical outputs scales as (2)* 1),
which significantly outpaces the topology count of 3*". Forn = 3 and
n = 4 there are, respectively, 2,097,152 and 1.15 X 10'8 theoretically
possible dynamical phase spaces.
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