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Abstract
Background: The precision of transcriptional regulation is made possible by the specificity of
physical interactions between transcription factors and their cognate binding sites on DNA. A
major challenge is to decipher transcription factor binding sites from sequence and functional
genomic data using computational means. While current methods can detect strong binding sites,
they are less sensitive to degenerate motifs.

Results: We present fREDUCE, a computational method specialized for the detection of weak or
degenerate binding motifs from gene expression or ChIP-chip data. fREDUCE is built upon the
widely applied program REDUCE, which elicits motifs by global statistical correlation of motif
counts with expression data. fREDUCE introduces several algorithmic refinements that allow
efficient exhaustive searches of oligonucleotides with a specified number of degenerate IUPAC
symbols. On yeast ChIP-chip benchmarks, fREDUCE correctly identified motifs and their
degeneracies with accuracies greater than its predecessor REDUCE as well as other known motif-
finding programs. We have also used fREDUCE to make novel motif predictions for transcription
factors with poorly characterized binding sites.

Conclusion: We demonstrate that fREDUCE is a valuable tool for the prediction of degenerate
transcription factor binding sites, especially from array datasets with weak signals that may elude
other motif detection methods.

Background
Transcriptional regulation is modulated by a complex net-
work of interactions between regulatory proteins and their
binding targets on DNA. To comprehensively understand
gene regulation at a systems level, a primary goal is to
decipher the "regulatory code" that consists of knowledge
of all transcriptional regulators, their DNA binding pro-

files, and their regulatory targets [1]. Regulatory informa-
tion can be inferred from the combined analysis of
genomic sequence with an abundance of microarray
based methods such as ChIP-chip (chromatin immuno-
precipitation on microarray)[2,3] and transcription factor
perturbation experiments [4,5]. However, highly reliable
regulator specificies have been unattainable for many reg-
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ulators probed by such genomic-scale methods [1] since
weak signals from regulators are often very difficult to iso-
late from experimental noise.

Thus, from a computational standpoint, a major chal-
lenge is to develop techniques that can extract maximal
regulator specificity information from imperfect data. A
common strategy among computational tools developed
for this purpose is to first obtain a small group of genes in
which a given motif may be statistically over-represented,
from which the motif can then be elicited using methods
such as position weight matrix updating and word enu-
meration [6-10]. While highly effective in some cases, a
potential drawback of this approach is that the process of
isolating a subgroup of sequences, typically done using
clustering, cutoffs, or functional categorization, can be
arbitrary. The delineation of signal from background may
be poor for noisy experimental data, where cutoffs can
lead to significant loss of information. Other algorithms,
such as dictionary- [11] or steganalysis-based [12] meth-
ods, do not rely on clustering but can benefit from sub-
group selection.

A technique used by many motif-finding algorithms is to
integrate expression data into the search process [12-14].
For example, the algorithm REDUCE (Regulatory Element
Detection Using Correlation with Expression) avoids sub-
group selection in a natural way by genome-wide fitting of
motif counts to expression data [15]. REDUCE is a deter-
ministic method that first enumerates oligonucleotides
and then identifies words whose occurrence in promoter
sequences correlate most strongly with expression data.
This procedure is applied iteratively to produce a set of oli-
gonucleotides that produce the best simultaneous fit to
the data. REDUCE requires only a single expression data-
set and makes use of the entire genomic dataset (both sig-
nal and background) to assess the significance of
individual motifs. This method, which has already been
widely applied [16-21], allows greater sensitivity to weak
transcriptional signals and facilitates the discovery of
combinatorial effects between regulators.

One weakness of REDUCE is that it can miss weak but
biologically significant variants of the regulator site.
Highly degenerate motifs whose individual variants fall
below the detection threshold will be missed altogether.
This is particularly the case for regulators in higher mam-
malian genomes, which can exhibit strong site to site var-
iation in specificity. Thus, we have generalized the
REDUCE approach to examine words containing degener-
ate IUPAC symbols representing multiple bases (i.e. S = C
or G). However, a straightforward extension of REDUCE
using exhaustive enumeration of degenerate motifs
becomes impractical when the motif length or number of

degenerate positions increase. Specifically, by including m
IUPAC symbols in a word of length l the motif search

space increases by a factor of  where 11

is the number of IUPAC symbols (excluding A,C,G,T). For
example, the computational cost is increased by 340-fold
for l = 10 and m = 2, and by 3500-fold for m = 3. Therefore,
we have developed fast-REDUCE (fREDUCE), a signifi-
cant re-implementation of the REDUCE algorithm that
allows efficient searches of the extended space of degener-
ate motifs. We have applied fREDUCE to detect multiple
motifs for transcription factor binding sites in yeast as well
as human.

Results
Algorithm
The original version of REDUCE identifies motifs by
exhaustively correlating all oligonucleotides up to length
l in promoter sequences with expression data. However,
the direct computation of the Pearson correlation coeffi-
cient is computationally laborious and is not well suited
for analyzing large spaces of degenerate oligonucleotides.
fREDUCE uses the following strategy to efficiently com-
pute the Pearson coefficients of the most significant
degenerate motifs (Figure 1): 1) A list of degenerate motifs
that can be derived from the sequence data is generated.
2) For each degenerate motif, we can quickly compute a
"pseudo-Pearson" coefficient, an estimate of the actual
Pearson coefficient. The pseudo-Pearson coefficient is
guaranteed to be an upper-bound on the actual Pearson
coefficient and is used as a filter to eliminate most (typi-
cally >99.9%) of the motif list. 3) Actual Pearson coeffi-
cients are computed and the top motif is found and 4) The
contribution from the top motif is subtracted from the
expression data to form a residual, which is used for sub-
sequent rounds of motif searching.

Performance Assessment with Yeast ChIP-chip
To assess the performance of fREDUCE, we applied the
algorithm to 352 ChIP-chip experiments from Harbison
et. al. [1] involving 203 known and putative transcription
factors in the budding yeast S. cerevisiae. For each ChIP-
chip experiment, we correlated the normalized array data
to the corresponding yeast intergenic sequences, eliciting
motifs of up to length 8 and containing up to 2 IUPAC
degenerate symbols. In order to verify the correctness of
our predictions, we compared these results to a bench-
marking set consisting of 65 high confidence motif logos
assembled from the predictions of six separate motif find-
ing algorithms [1]. For 47 of 65 benchmarks fREDUCE
produced an IUPAC motif that was identical to the anno-
tated motif, including correct degeneracies (Table 1). In
comparison, we ran AlignACE [22,23] on the same 65
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ChIP-chip experiments. Using the same filtering and com-
parison criteria, we found that AlignACE detected the
annotated motif for only 36 of 65 regulators. We also
compared the performance of fREDUCE with those of the
other 5 motif finding algorithms used to assemble the
benchmark motifs (Figure 2). Even though the bench-
mark motifs are likely to be biased toward the six pro-
grams from which they were originally found, fREDUCE
still stood out as having the best individual performance.

We also examined the performance of fREDUCE on 38
regulators for which Harbison et. al. detected motifs with
lower confidence [see Supplementary Tables]. Noting that
many of these 38 predicted motifs could contain inaccu-
racies, fREDUCE matched 7 of these predictions while
alignACE matched 3.

Comparision to the original REDUCE and to 
MatrixREDUCE
To assess the ability of fREDUCE to correctly capture
motif degeneracies, we systematically compared the pre-
dictions made by fREDUCE to those made by its predeces-
sor REDUCE on the subset of benchmark motifs
containing significant degeneracy. Of 15 degenerate
benchmark motifs, fREDUCE assigned IUPAC degenerate
symbols identically to the benchmark in 11 cases (Figure
3). In the 4 remaining cases (HAP1, MSN2, STB5 and
SUM1) fREDUCE made a prediction which is consistent
with the benchmark motif while having a different degen-
eracy (e.g. CGGkGwTA vs. CGGwsTTA for STB5). In all of
these cases, fREDUCE assigns the degenerate motif a more
significant p-value than the corresponding non-degener-
ate motif. We note that in some cases motif degeneracies
can be detected by the original REDUCE as separate motif
predictions. This is especially true for regulators with
strong signal (AFT2, CIN5, FHL1, GCN4, SFP1 and YAP7).
However, in 5 cases degeneracies successfully predicted by
fREDUCE were not detectable at all by REDUCE (CAD1,
PHO4, SNT2, TEC1 and YAP1). This is typically character-
istic of regulators with weaker signal.

We also compared the performance of fREDUCE to
MatrixREDUCE, a recently introduced REDUCE-variant
that refines motifs elicited by REDUCE into Position Spe-
cific Affinity Matrices (PSAM) [24,25]. MatrixREDUCE
matched 43 of the 65 benchmarks as well as 6 of 38 motifs
in the lower confidence set [see Additional file 1]. In the
high confidence set, six predictions were specific to fRE-
DUCE (HAP4, HSF1, INO4, LEU3, NFG1 and THI2)
while two were specific to MatrixREDUCE (MCM1, SIP4).
Specific predictions from the lower confidence set
included ROX1, SWI5, UME1 for fREDUCE and PUT3,
RLM1 for MatrixREDUCE. Overall, fREDUCE has a
slightly stronger joint performance with 9 uniquely cor-
rect predictions from the two sets versus MatrixREDUCE's
4. In the former cases, MatrixREDUCE did not seem to
begin with the correct seed, suggesting that an enumera-
tion strategy is beneficial for some regulators. In the latter
cases, fREDUCE does not find the correct motif because
the long and fuzzy nature of these motifs makes them too
costly for enumeration. We note that some of these differ-
ences are dependent on run parameters; with the parame-
ters we have used MatrixREDUCE took an order of
magnitude longer to run on average than fREDUCE (data
not shown).

Prediction of novel motifs from yeast ChIP-chip
Next we looked to see whether fREDUCE was capable of
detecting novel motifs for transcription factors with
uncharacterized specificities. Of the remaining transcrip-
tion factors in the ChIP-chip study with no benchmark
logo, we found 24 cases where fREDUCE made nontrivial

The fREDUCE algorithmFigure 1
The fREDUCE algorithm. A set of possible IUPAC strings 
are generated from the input sequence. For each IUPAC 
string, we compute a pseudo-Pearson coefficient, which is an 
estimate and upper bound on the true Pearson coefficient. 
After the vast majority of motifs are filtered out using the 
pseudo-Pearson value, we then compute true Pearson coeffi-
cients for the remaining motifs and select the top motif. The 
residual expression value is then used to iteratively derive 
subsequent motifs.
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Table 1: fREDUCE motif predictions from yeast ChIP-chip

Factor Known Site Condition Motif p-value fREDUCE match? AlignACE Match?

ABF1 rTCAyt....Acg YPD rTGATm 22.4 √ √
ACE2 tGCTGGT YPD kGCTGGy 6.2 √
AFT2 GGGTGy H2O2Lo rGGTGy 91.5 √ √
AZF1 YwTTkcKkTyyckgykky YPD mTTTTw 14.8
BAS1 TGACTC YPD TGACTCCG 37.2 √ √
CAD1 mTTAsTmAkC YPD GmTTAsTA 4.2 √ √
CBF1 tCACGTG YPD CACGTG 90.7 √ √
CIN5 TTAygTAA YPD TTAyrTAA 59.4 √ √

DAL82 GATAAGa RAPA GATAAG 9.4 √
DIG1 TgAAAca YPD TGAAACA 18 √
FHL1 rTGTayGGrtg YPD GTAyGGrT 141.2 √ √
FKH1 tTgTTTac YPD yTGTTkAC 28.8 √
FKH2 aaa.GTAAACAa YPD GTAAACA 23.7 √ √
GAL4 CGG...........cCg YPD TTCGGAGC 4.9 √
GAT1 aGATAAG RAPA GATAAG 13.3 √
GCN4 TGAsTCa YPD rTGAsTCA 166.7 √ √
GLN3 GATAAGa.a RAPA GATAAG 38.2 √
HAP1 GGmraTA.CGs YPD kTTATCGG 60.3 √ √
HAP4 g.CcAAtcA YPD CCAATsAr 21.7 √ √
HSF1 TTCya.....TTC H2O2Hi TTCyrGAA 109.5 √ √
IME1 H2O2Hi
INO2 CAcaTGc YPD kCACATGC 12.8 √
INO4 CATGTGaaaa YPD CAyrTG 89.2 √ √
LEU3 cCGgtacCGG YPD CGGkACCG 10.8 √ √
MBP1 rACGCGt YPD ACGCGT 126.9 √ √
MCM1 tttCC.rAt..gg Alpha yTTCCTAA 5.7 √
MET4 RMmAwsTGKSgyGsc SM CrCGyG 14.8
MSN2 mAGGGGsgg H2O2Hi rGGGGy 20.8 √
NDD1 tt.CC.rAw..GG YPD CTCGAGGC 12.3 √
NRG1 GGaCCCT YPD AGGGTCs 11.3 √ √
PDR1 ccGCCgRAwra YPD CCrwACAT 11.4
PHD1 sc.GC.gg YPD mTGCAk 21.1 √
PHO2 SGTGCGsygyG Pi-
PHO4 CACGTGs Pi- sCACGTGs 14.1 √
RAP1 tGyayGGrtg SM GyrTGGGT 57.1 √ √
RCS1 ggGTGca.t H2O2Lo GGGTGCA 43.6 √ √
RDS1 kCGGCCGa H2O2Hi TCCGCGG 35.6 √
REB1 CGGGTAA YPD CGGGTAAy 136.7 √ √
RFX1 TTgccATggCAAC YPD GTCGTCCG 3.2 √
RLR1 ATTTTCttCwTt YPD
RPN4 TTTGCCACC H2O2Lo TyGCCACC 109.8 √ √
SFP1 ayCcrtACay SM yCCrTACA 31.6 √ √
SIG1 ArGmAwCrAmAA H2O2Hi
SIP4 CGG.y.AATGGrr SM CTCGGCCC 58.4

SKN7 G.C..GsCs H2O2Lo GsCyGGCC 37.7 √
SNT2 yGGCGCTAyca YPD GrTAGCGC 96.1 √ √
SOK2 tGCAg..a BUT14 GGTrCAGA 5.6
SPT2 ymtGTmTytAw YPD TkyATA 6.2
SPT23 rAAATsaA YPD wTkAAA 25.1
STB1 rracGCsAaa YPD wCGCGT 4 √
STB4 TCGg..CGA YPD CGGryCGA 7.1 √ √
STB5 CGGwstTAta YPD CGGkGwTA 24 √
STE12 tgAAACa YPD TGAAACA 38.9 √ √
SUM1 gyGwCAswaaw YPD GyGTCAs 25.0 √ √
SUT1 gcsGsg..sG YPD wCkCCG 49.8
SWI4 raCgCsAAA YPD CGCsAAAA 12.6 √ √
SWI6 tttcGCGt YPD TTTCsk 11.6 √
TEC1 rrGAATG YPD rrGAATGT 22.4 √
THI2 gmAAcy.twAgA Thi- GGAAACyS 4.5 √
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(not repetitive poly-dA/dT sequences) motif predictions
with p-values under 10-3 (Table 2). In all of these cases,
there has been little to no experimental information avail-
able regarding the specificity, and existing computation
methods have yielded little additional insight. Neverthe-
less, in a few cases we found evidence in the literature
which supports the novel motif predictions we have made
with fREDUCE. For example, the binding site of ARO80,
a regulator of the aromatic amino acid structural genes,
has been characterized in two genes as being tandem
repeats of the sequences TAACCG and TTGCCG [26].
From the ChIP-chip data, fREDUCE elicited the motif
GATAACCG with high significance (p = 10-41) as well as
the degenerate motif T(A/G)CCG(A/C) (p = 10-5.6), which
is similar to both of the characterized repeat elements and
reflects their degeneracies. We also considered the regula-
tor MTH1, which negatively regulates the glucose sensing
signal transduction pathway by interacting with the tran-
scriptional repressor Rgt1p [27]. Although it is unknown

whether Mth1p has intrinsic DNA sequence specificity,
Rgt1p has been shown to have the specificity CGGANNA
[28]. fREDUCE found the matching motif GGAGRA (p =
10-3.57), which is compatible with the notion that Mth1p
binds to DNA in association with Rgt1p.

Motif Elicitation in Human Hepatocytes
In higher eukaryotes, motifs tend to be more degenerate
and dispersed among longer intergenic regions. A com-
mon benchmark set used to evaluate the performance of
computational algorithms in higher eukaryotes is the liver
specific dataset [29]. Krivan et. al compiled a set of exper-
imentally defined regulatory elements upstream of genes
that were expressed exclusively in liver or in a small
number of tissues including liver. From this set of genes,
they found that hepatocyte-specific gene expression is
mainly regulated by a small set of transcription factors
(TFs), including HNF-1, HNF-3, HNF-4, and C/EBP. HNF-
1, HNF-4, and C/EBP are known to be transcriptional acti-
vators based on TRANSFAC [30] annotation.

We ran fREDUCE on human adult hepatocyte expression
data to capture binding sites of liver-specific transcription
factors. fREDUCE captured both the forward and reverse
complement of the HNF-4 binding site as well as two key
degeneracies in the motif core as published in Krivan et.
al. (Figure 4). HNF-4 is known to be linked to gene expres-
sion in mature liver [29], which is consistent with the
expression data set used in our analysis. In contrast,
REDUCE was not able to capture the known binding sites,
which is most likely due to the degeneracy involved in the
known consensus. These results show the potential of
using fREDUCE to identify regulatory elements in higher
eukaryotes, including human.

Discussion
Despite the availability of powerful techniques such as
ChIP-chip, the binding specificities of many transcription
factors remain uncharacterized. This can be due to several
reasons, including 1) regulators that have few genomic
targets 2) regulators which interact weakly or indirectly
with their targets and 3) regulators which bind to their
maximal set of targets only under very specific environ-
mental cues, which may be hard to find experimentally.
fREDUCE offers increased sensitivity in these cases

Comparison of fREDUCE to six other algorithms on 65 yeast ChIP-chip benchmarksFigure 2
Comparison of fREDUCE to six other algorithms on 
65 yeast ChIP-chip benchmarks. AlignACE* indicates 
results of running AlignACE from scratch, while the perform-
ance of other methods were compiled from the Harbison et. 
al supporting website.
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TYE7 tCACGTGAy YPD TCACGTGr 70.8 √ √
UME6 taGCCGCCsa YPD GCsGCy 154.3 √ √
YAP1 TTaGTmAGc YPD mTkACTAA 13.6 √ √
YAP7 mTkAsTmAk H2O2Hi mTTAsTAA 121.9 √ √

YDR026c ttTACCCGGm YPD CCGGGTAA 23.2 √ √
ZAP1 ACCCTmAAGGTyrT YPD wAyATT 16.5

fREDUCE predictions from 65 yeast ChIP-chip experiments of Harbison et. al. Check marks () indicate that fREDUCE matched the IUPAC string 
corresponding to the benchmark logo. The results of a similar analysis with AlignACE is given in the right column.

Table 1: fREDUCE motif predictions from yeast ChIP-chip (Continued)
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because it 1) uses the entire array data set for correlation
and 2) searches all possible degeneracies. While fREDUCE
is in some respects similar to motif regressor [14] and
matrixREDUCE, a key distinction is that fREDUCE detects
degenerate motifs de novo by exhaustive enumeration. In

contrast, matrixREDUCE refines degeneracies from non-
degenerate seeds and motif regressor selects among candi-
date matrices using correlation with expression. Thus,
fREDUCE may be advantageous when motifs are difficult

fREDUCE predictions in comparison to non-degenerate predictions made by REDUCEFigure 3
fREDUCE predictions in comparison to non-degenerate predictions made by REDUCE. Benchmark logos and 
their corresponding motifs are shown for reference. P-values are shown as -log10 values.

TF REDUCE 
(p-value) 

fREDUCE 
(p-value) 

Benchmark Logo Benchmark 
Motif 

AFT2 GGGTGC(61.8) 
GGGTGT(31.6) 

GGGTGy(91.5) GGGTGy 

CAD1 ATTAGTA(2.9) 
- 

GmTTAsTA(4.2) mTTAsTmAkC 

CIN5 TATGTAA(17.8) 
 TACGTAA(15.6) 

TTAyrTAA 
(59.4) 

TTAyGTAA 

FHL1 TGTACGG(59.4) 
 GTATGGG(30.5) 

GTAyGGrT 
(159.7) 

rTGTayGGrt 

GCN4 TGACTCA(103.3) 
 GAGTCAT(36.4) 

rTGAsTCA 
(166.7) 

TGAsTCA 

HAP1 TATCGG(38.8) 
- 

kTTATCGG 
(60.3) 

GGmraTA.CGs 

MSN2 AAGGGG(8.6) 
- 

rGGGGy(20.8) mAGGGGsgg 

PHO4 CACGTGC(6.4) 
- 

sCACGTGs 
(14.1) 

CACGTGS 

SFP1 CCGTACA(12.2) 
CCCATAC(10.4) 

yCCrTACA 
(31.6) 

ayCcrtACay 

SNT2 GGCGCTA(49.7) 
  CGCTATC(7.0) 

GCGCTAyC 
(96.1) 

yGGCGCTAyca 

STB5 CGGTGTT(7.0) 
- 

CGGkGwTA 
(24.0) 

CGGwstTAta 

SUM1  TGTCAC(11.4) 
 TGACAC(8.9) 

GwCAGTAA 
(25.0) 

gyGwCAswaa 

TEC1 AGAATG(13.0) 
- 

rrGAATGT 
(22.4) 

rrGAATG 

YAP1  ATTAGT(10.9) 
- 

TTAGTmAk 
(13.6) 

TTaGTmAGc 

YAP7 TTACTAA(50.1) 
TTAGTAA(41.7) 
TGACTAA(15.9) 

TTAsTAAk 
(118.6) 

mTkAsTmAk 
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to detect in a non-degenerate form or are missed in the
candidate set.

By comparison to 65 benchmark logos in yeast, we see
that fREDUCE is comparable to or greater in detection
power versus algorithms like AlignACE for strong motifs
that are relatively easy to detect. Even in these cases, fRE-
DUCE outperforms the original REDUCE algorithm by
accurately predicting known degeneracies. The most
advantageous use of fREDUCE, however, is for the detec-
tion of weak motifs which may lie at the border of detec-
tion. It is difficult to verify the correctness of many of the

motifs elicited in these cases because of their poor charac-
terization. Nevertheless, we have found two cases where
fREDUCE was sensitive to subtle signals: ARO80, for
which sites are highly degenerate, and MTH1, which may
have a weak signal due an indirect interaction with DNA.
We have also shown that fREDUCE is capable of capturing
the HNF-4 binding site in hepatocytes, demonstrating
that this algorithm is generally applicable to the detection
of degenerate motifs in mammalian cells.

Table 2: fREDUCEpredictions for regulators with poorly characterized specificities

Regulator Predicted Site P-value Motif from Literature Search

ARG80 TTYTCY 34.3 CYNYYAANKRMAR
ARO80 TRCCGM 5.6 TWRCCG
ASK10 AYTTKA 9.1
CST6 TYAAWA 7.0
DAT1 WTTSAA 16.7
ECM22 GCRSCC 16.2 TCGTATA
EDS1 TWTTSA 8.4
FAP7 WTRAAG 11.3
GAT3 CCTSGGC 15.2
GCR2 TTCAWW 5.0 CTTCC
HAL9 WTTRAA 14.7
HIR3 WTTRAA 22.0 ACGCTAAA
IME4 YACACAC 17.8

MAL13 CCASSG 11.6
MAL33 GCRCAS 13.8
MET18 WTTCAA 8.2
MGA1 TTTRAY 5.9
MSN1 MMCCCA 3.8
MTH1 GGAGRA 3.4 CGGANNA *
OAF1 CGCASY 4.9 CGGNNNTNAN9–12CCG
RGM1 CSGSCC 27.1
RTG1 ATYTRA 10.3
SIP3 WTCAAW 7.6

SMK1 WTGWAG 3.9
STB2 CAAGGYC 3.1
STB6 TATSAW 5.6
STP4 AARMTT 24.1
TOS8 RCACMC 20.7
UPC2 MATSAA 4.5
WAR1 TYAAGW 6.6

YBR239c WATAYT 16.8
YDR049W AWTGAW 3.5
YER051w AKYACT 3.9
YER130C CAARTW 3.1
YFL052w WTCAAK 3.6
YGR067C TTYAAW 4.6
YKR064W WGTTRA 6.3
YLR278C KTTMAA 7.2

YML081W WCAAMT 3.7
YNR063W TCAARTA 2.4
YPR196W WTCAAW 10.3

We searched the literature for evidence supporting our motif predictions and the matching examples are highlighted. *The annotated motifs for 
Rgt1p.
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Conclusion
We have presented the motif prediction algorithm fRE-
DUCE, a refined variation of REDUCE specialized for the
detection of degenerate motifs. The two primary strengths
of fREDUCE are 1) it maximizes data utilization by fitting
all expression data and 2) it searches motif degeneracies in
a comprehensive and unbiased way. We have shown that
fREDUCE is an improvement upon the existing REDUCE
algorithm for degenerate binding profiles and that it can
outperform existing motif finding methods on yeast
ChIP-chip benchmarks. Furthermore, fREDUCE is able to
detect degenerate signals in yeast and human. Thus, fRE-
DUCE should be a valuable computation tool for the
detection of subtle motifs.

Methods
Algorithm
The pearson correlation between expression values and
counts of a possibly degenerate motif D is given by:

Where i is an index over genes, Ei is the expression of gene

i, ni
D is the number of motif counts matching D in

sequence i,  is the average of ni
D over all genes and G is

the total number of genes. Let gi be the normalized gene

expression: , so that  and

. Then the Pearson coefficient reduces to:

Since , where the sum is over all non-degener-

ate nucleotide motifs S that match D, we can pre-compute

and store a table of  for all S and readily construct

the numerator of P(D) for any D. However, the denomi-
nator is not linear in ni

D and cannot be expressed as a sum

over S. Nevertheless we can compute a pseudo-Pearson
coefficient:

where  can be constructed as a sum over

S.

Since

,

we have . Hence the magnitude of

pseudo-Pearson coefficient is an upper bound for the
magnitude of the actual Pearson coefficient, allowing
rapid screening of all degenerate motifs. Actual Pearson
values can then be computed for a small subset of motifs
with pseudo-Pearson values above a given threshold. This

scheme is effective except for motifs where , in
which case the Pearson coefficient must be computed
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directly. Thus, fREDUCE will give a computational advan-
tage as long as the average motif count  is less than one.

Specifically, fREDUCE uses the following procedure:

(1) For each oligonucleotide string S of length L that
appears in the sequence, we pre-compute the quantities

 and 

(2) We generate a list of all possible nucleotides contain-
ing up to l degeneracies matching the set of S.

(3) We rapidly compute corresponding quantities for all
degenerate strings D matching S:

, and

 and use them to construct the

pseudo-Pearson coefficient . We save

only those motifs whose pseudo-Pearson coefficients
exceed a threshold corresponding to the p-value cutoff for
its motif class. For the motifs whose pseudo-Pearson coef-

ficients cannot be calculated directly (because ),
we compute the true Pearson.

(4) We sort the remaining motifs in decreasing order of
the magnitudes of their pseudo-Pearson and compute true
Pearson coefficients in this order. We stop computing
when the magnitude of the pseudo-Pearson value of the
current motif in the list falls below the magnitude of the
true Pearson coefficient of the top motif.

(5) Finally, we compute the residual gene expression

, that is, the expression data after the

effect of motif D has been taken into account. After a
renormalization, the residual is used to carry out subse-
quent rounds of motif finding.

To estimate the statistical significance of motifs, we note
that since |P(D)|<<1, its distribution is well approximated
by a Normal distribution. We convert P(D) into a z-score:

This z-score is used to derive the p-value [15]:

To correct for multiple testing, we first apply a Bonferroni

correction factor of  to each motif of length

L containing m IUPAC symbols. This factor corresponds
to the total number of motifs in the class of L and m,
where D = 11 or 15 depending on whether 3-fold IUPAC
symbols are included. We then apply a second correction
factor for the total number of motif classes examined for
a particular run. For example, with the settings (L = 7 and
m = 1) we would examine all motifs in the classes (6,0),
(6,1), (7,0) and (7,1) giving a second correction factor of
4 for each motif (we require a minimum motif length of
6). This weighted method of correction has the advantage
of accounting for the fact that motif classes with larger val-
ues of L and m tend to give higher numbers of false posi-
tives.

fREDUCE performance testing
We ran fREDUCE on the REB1_YPD ChIP-chip data from
Harbison et. al. for varying L and m on an 2.40 GHz Intel
Xeon processor [see Additional file 2]. In all runs, the
known Reb1p binding site CGGGTAA or close variants
appeared as the top motif (data not shown).

Motif Detection from Yeast ChIP-chip
We applied fREDUCE to 354 yeast ChIP-chip experiments
involving 203 known and putative transcription factors
[1]. Each experiment was analyzed with fREDUCE using
the corresponding set of yeast intergenic sequences,
searching all motifs up to length 8 containing up to 2 two-
fold IUPAC degenerate symbols. We filtered the set of
motifs found for each fREDUCE run by three criteria. First,
since yeast intergenic sequences have relatively low G/C
content, we eliminated motifs which only contained the
letters A/T/W as such motifs tend to have inflated correla-
tion coefficients. From the remaining list of motifs, we
chose the top three most significant motifs for further
comparison. Accounting for the fact that we are eliciting
motifs from several hundred experiments, we also dis-
carded motifs with corrected p-values less significant than
10-2. If the given transcription factor was associated with
ChIP-chip data under multiple environmental conditions,
then filtered motifs from all conditions were combined
and the top three chosen. The final motifs for each tran-
scription factor were compared to reference motifs pre-
dicted by Harbinson et. al. based on a composite of several
motif finding algorithms [1]. There were a total of 102 ref-
erence motifs from the authors' website [31], 65 of which
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were considered high confidence. Each reference motif
was compared to their corresponding fREDUCE predic-
tions using a sliding window string comparison. Predicted
motifs are considered a match if there is at least one win-
dow where all IUPAC characters are consistent between
both strings. Motif predictions made for transcription fac-
tors with no reference motifs were compared to literature.

Comparison to non-degenerate REDUCE
From the 65 high confidence benchmarks, we selected
cases where the annotated motif had at least one IUPAC
character. In 15 of these cases, both fREDUCE and
REDUCE made correct, if not correctly degenerate predic-
tions. In 11 of these 15 cases fREDUCE made the correct
IUPAC assignments. For each of these 11 cases, we consid-
ered whether the degeneracy can be assembled from non-
degenerate motifs with p < 0.01 predicted by REDUCE.

Comparison to other motif-finding algorithms
We obtained the alignACE package and ran all ChIP-chip
data with the default parameters using probes with p-val-
ues below 0.001. The output alignment was converted
into an IUPAC string using the method described by
Cavener et. al. [32] and the resulting motifs were com-
pared to reference motifs in the same way as the fREDUCE
motif predictions. Details of alignACE motifs found and
comparisons to alignACE motifs from Harbison et. al. are
available in Supp. Table 1. We also obtained MatrixRE-
DUCE [33] and ran all ChIP-chip data against the pro-
vided yeast sequence file Y5_600_Bst.fa. Default
parameters were used except that we set max_motif = 10
for consistency with our fREDUCE runs. For the other five
algorithms, we tallied the total number of references to
each algorithm from the list of matrices on Harbison et al.
supporting website [34].

Motif Detection from Human Liver Tissue
158 custom made Affymetrix gene expression arrays for
79 different human tissues (2 replicates each) were
obtained from Novartis in a publicly available database
[35,36]. The arrays were normalized using gcrma [37,38]
and the probes were annotated using Ensembl gene anno-
tation [39] for human build 35. To study adult liver spe-
cific gene expression, we first normalized expression
values for each liver tissue replicate against the average
expression of all other tissues (excluding the 2 liver tissue
experiments) The expression value of each gene in liver
tissue experiments is represented as the following z-score:

Where n is the liver tissue experiment replicate number, g
is the index over genes, Eng

liver is the expression value of
gene g in replicate n, µother is the mean expression value of

gene g in non-liver tissue experiments, and σother is the
standard deviation of gene g in non-liver tissue experi-
ments.

Human genomic sequences (build 35) were extracted
1000 bp upstream from the transcriptional start site (TSS)
if known, or from the initiation codon, based on Ensembl
v35 [40]. The repeat masked promoter sequences were
mapped to corresponding z-scores, which represent gene
expression. This resulted in a final set of 11,710 paired z-
scores and promoter sequences for input into fREDUCE.
We then ran fREDUCE on the z-scores for each replicate of
the liver tissue on the basis that a higher z-score translates
to higher expression in liver tissues compared to the other
tissues. Two different sets of parameters were run on each
replicate as follows: length 8 with 0 IUPAC symbols and
length 8 with 2 IUPAC symbols.

Availability and Requirements
• Project Name: fREDUCE

• Project Home Page: http://genome3.ucsf.edu:8080/fre
duce

• Operating system: Linux

• Programming languages: C++

Source code and example usage are included in the release
file fREDUCE-1.1.tar.gz [see Additional file 3].

List of Abbreviations
ChIP-on-chip: chromatin immunoprecipitation on
microarray; REDUCE: regulatory element detection using
correlation with expression; fREDUCE: fast regulatory ele-
ment detection using correlation with expression.
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