
The designability of protein structures

Robert Helling,1 Hao Li,2 Régis Mélin,3 Jonathan Miller,
Ned Wingreen, Chen Zeng,4 and Chao Tang

NEC Research Institute, Princeton, NJ, USA

It has been noted that natural proteins adapt only a limited
number of folds. Several researchers have investigated why
and how nature has selected this small number of folds.
Using simple models of protein folding, we demonstrate
systematically that there is a “designability principle” be-
hind nature’s selection of protein folds. The designability of
a structure (fold) is measured by the number of sequences
that can design the structure—that is, sequences that pos-
sess the structure as their unique ground state. Structures
differ drastically in terms of their designability. A small
number of highly designable structures emerge with a num-
ber of associated sequences much larger than the average.
These highly designable structures possess proteinlike sec-
ondary structures, motifs, and even tertiary symmetries. In
addition, they are thermodynamically more stable and fold
faster than other structures. These results suggest that pro-
tein structures are selected in nature because they are
readily designed and stable against mutations, and that such
a selection simultaneously leads to thermodynamic
stability. © 2001 by Elsevier Science Inc.
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INTRODUCTION

A protein consists of a chain of amino acids whose sequence is
determined by the information in DNA/RNA. An open protein
chain, under normal physiological conditions, will fold into a
three-dimensional configuration (the native state) to perform its
function. For single domain globular proteins, which are our

focus here, the length of the chain ranges from;30 to ;400
amino acids. For these proteins, the surface-to-core ratio (the
number of amino acids on the surface of a protein over that in
the core) is of the order of unity. A protein can be folded (to its
native state) and unfolded (to a flexible open chain) reversibly
by changing the temperature, pH, or the concentration of some
denaturant in solution. The protein folding problem can be
traced back at least 70 years when Wu1,2 first pointed out that
denaturation was in fact the unfolding of the protein from “the
regular arrangement of a rigid structure to the irregular, diffuse
arrangement of the flexible open chain.” A remarkable turning
point came about 40 years ago when Anfinsen3 and coworkers
established the so-called “thermodynamic hypothesis.” That is,
that for single domain proteins (1) the information coded in the
amino acid sequence of a protein completely determines its
folded structure, and (2) the native state is the global minimum
of the free energy. These conclusions should be somewhat
surprising to physicists. For the configurational “(free) energy
landscape” of a heteropolymer of the size of a protein is
typically “rough,” in the sense that there are typically many
metastable states, some of which have energies very close to
the global minimum. How could a protein always fold into its
unique native state with the lowest energy? The answer is
evolution. Indeed, random sequences of amino acids are usu-
ally “glassy” and usually can not fold uniquely. But natural
proteins are not random sequences. They are a small family of
sequences, selected by nature via evolution, and each has a
distinct global minimum that is well separated from other
metastable states (Figure 1). One might ask: what are the
unique and yet common properties of this special ensemble of
proteinlike sequences? Can one distinguish them from other
sequences without the arguably impossible task of constructing
the entire energy landscape? The answer lies in the heart of the
question we introduce in the next paragraph and is the focus of
this discussion.

There are about 50,000–100,000 different proteins in the
human body, with a much larger number of natural proteins in
the biological world. Protein structures are classified into dif-
ferent folds. Proteins of the same fold have the same major
secondary structures in the same arrangement with the same
topological connections,4 with some small variations typically
in the loop region. In some sense, folds are distinct templates
of protein structures. Proteins with a close evolutionary relation
often have high sequence similarity and share a common fold.
It is intriguing that common folds occur even for proteins with
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different evolutionary origins and biological functions. The
number of folds is therefore much lower than the number of
proteins. Figure 2 shows the cumulative number of solved
protein domains along with the cumulative number of folds as
a function of the year. It is increasingly less likely that a newly
solved protein structure would take a new fold. It is estimated
that the total number of folds for all natural proteins is only
about 1,000.5,6 Some of the frequently observed folds, or “su-
perfolds,”7 are shown in Figure 3. Among apparent features of
these folds are secondary structures (a helices andb strands),
regularities, and symmetries. Therefore, as in the case of se-
quences, protein structures or folds are also a very special class.

Is there anything special about natural protein folds—are
they merely an arbitrary outcome of evolution or is there some
fundamental reason behind their selection? This question has
been addressed by a number of authors from different view-
points. One of the earliest attempts is by Finkelstein and
coworkers.8–10 They argued that certain motifs are easier to
stabilize and thus more common, either because they have
lower (e.g., bending) energies or because they have unusual
energy spectra over random sequences. Yue and Dill11 ob-
served in a lattice HP model that protein-like folds are associ-
ated with sequences that have minimal number of degenerate

low energy states. Govindarajan and Goldstein12–14 suggested
that a protein structure should fold fast. They studied the
“foldability” of structures in a lattice model and found that the
optimal foldability varies from structure to structure. They
further argued that structures with larger optimal foldability
should tolerate more sequences and be more robust to muta-
tions.

More recently, a “designability principle” was proposed as
nature’s selection mechanism for protein structures.15–17 The
designability of a structure is defined as the number of se-
quences that can design the structure—that is, sequences that
possess the structure as their unique ground state. With the use
of simple models, we have demonstrated that structures differ
drastically in their designability. A small number of structures
are highly designable while the majority of structures have low
designability. The highly designable structures also possess
other proteinlike features: thermodynamic stability, mutational
stability, fast folding, regular secondary structures, and tertiary
symmetries. Our results suggest that protein structures are
selected in nature because they are readily designed and stable
against mutations, and that such a selection simultaneously
leads to thermodynamic stability. In the rest of this study, we

Figure 1. The schematic energy landscapes of (a) a protein sequence and (b) a random sequence.

Figure 2. The cumulative numbers of PDB domains, (nonredundant) protein domains, and folds versus year. Source: SCOP4

and Chothia.6 Courtesy of Dr. Steven Brenner.
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give a brief review and summary for some of the work on
designability.

METHODS

We have used lattice and off-lattice models. For interacting
potentials between amino acids, we have used HP, solvation, or
Miyazawa-Jernigan matrix.18,19

HP Lattice Models

The simplest model of protein folding is the so-called “HP
lattice model,”20–22 whose structures are defined on a lattice
and whose sequences take only two “amino acids”: H (hydro-
phobic) and P (polar) (see Figure 4). The energy for a sequence
folded into a structure is simply given by the short-range
contact interactions

H 5 O
i,j

evivjD~r i 2 r j!, (1)

whereD(r i 2 r j) 5 1 if r i andr j are adjoining lattice sites but
i and j are not adjacent in position along the sequence, and
D(r i 2 r j) 5 0 otherwise. Depending on the types of monomers
in contact, the interaction energyevivj

will be eHH, eHP, or ePP,
corresponding to H™H, H™P, or P™P contacts, respectively (see
Figure 4).a We choose these interaction parameters15 to satisfy
the following physical constraints: (1) compact shapes have
lower energies than any noncompact shapes; (2) H monomers
are buried as much as possible, expressed by the relationePP.

aThe system is surrounded by water. The energyevm is the relative energy
of forming av 2 m contact in water. One can think ofevm 5 Evm 1 Eww 2
Evw 2 Emw, where theEs are “absolute” energies and the subscriptw
denotes water molecules.

Figure 3. Representatives of some popular folds.b-strand is shown in dark,a-helix in grey, and turns and loops in white.
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eHP . eHH, which lowers the energy of configurations in which
Hs are hidden from water; and (3) different types of monomers
tends to segregate, expressed by 2eHP . ePP1 eHH. Conditions
2 and 3 were derived from the analysis23 of the real protein data
contained in the Miyazawa-Jernigan matrix18,19of inter-residue
contact energies between different types of amino acids. Since
we consider only the compact structures, all of which have the
same total number of contacts, we can freely shift and rescale
the interaction energies, leaving only one free parameter. In our
study, we chooseeHH 5 22.3,eHP 5 21, andePP 5 0 which
satisfy conditions 2 and 3 above. The results are insensitive to
the value of eHH as long as both of these conditions are
satisfied.b

Lattice Model with MJ Matrix

To ensure that our results are not an artifact of the HP model,
we have studied the lattice model (1) with 20 amino acids.24 In
this case the interaction energiesevivj

, wherevi can now be any
one of the 20 amino acids, are taken from the Miyazawa-
Jernigan matrix.c

Off-Lattice Models

We have also studied the designability of structures for some
off-lattice models.25 Following Park and Levitt,26 we use a
discrete set of dihedral angles (fi, ci), i 5 1, 2,. . . , n, to
construct the structures. Side chains are represented by hard-
core spheres centered aroundcb atoms. We use a form of
solvation energy as the energy function for a sequence folded
onto a structure:

H 5 2 O
i51

N

sihvi, (2)

wherehvi
is the hydrophobicity of theith residuevi along the

chain andsi is the degree of burial of theith residue in the
structure. Equation 2 is essentially a solvation model27 at the
residue level.d

RESULTS

HP Lattice Model

We have studied the HP lattice model (1) on a three-
dimensional cubic lattice and on a two-dimensional square
lattice.15 For the three-dimensional case, we analyze a chain
composed of 27 monomers. We consider all the structures that
form a compact 33 3 3 3 cube. There are a total of 51,704
such structures unrelated by rotational, reflection, or reverse
labeling symmetries.15,28For a given sequence, the ground state
structure is found by calculating the energies of all compact
structures. We completely enumerate the ground states of all
227 possible sequences. We find that only 4.75% of the se-

bLi, Tang and Wingreen’s23 analysis of the interaction potential of amino
acids arrived at a formemv 5 hm 1 hv 1 c(m, v), wherehm is a measure of
hydrophobicity of the amino acid,m, andc is a small mixing term. The
additive term, i.e., the hydrophobic force, dominates the potential. The
choice of eHH 5 22.3 in our study can be viewed as a result of a
hydrophobic part22 plus a small mixing part20.3. Several authors have
investigated the effect of the mixing contribution as a small perturbation to
the additive potential.32–35

cNote that there are two or more matrices in studies by Miyazawa and
Jernigan.18,19 We use the matrixeij , which is the matrix containing all
interactions including the hydrophobic interaction. Other matrices have
removed, to various degrees, the hydrophobic contribution (e.g., the matrix
eij9 has removed the additive part and contains only the mixing term (see
footnoteb). Thus, using these modified MJ matrices without care may lead
to very different and often unphysical results.

dEquation (2) can also be obtained by taking the mixing term of the
equation in footnoteb to zero.16,32–35

Figure 4. A 3D lattice HP model. A sequence of H (dark disc) and P (light disc) (a) is folded into a 3D structure (b).
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quences have unique ground states and thus are potential pro-
teinlike sequences. We then calculate the designability of each
compact structure. Specifically, we count the number of se-
quences,NS, that have a given compact structureS as their
unique ground state. We find that compact structures differ
drastically in terms of their designability,NS. There structures
can be designed by an enormous number of sequences, and
there are “poor” structures that can only be designed by a few
or even no sequences. For example, the top structure can be
designed by 3,794 different sequences (NS 5 3,794), while
there are 4,256 structures for whichNS 5 0. The number of
structures having a givenNS decreases monotonically (with
small fluctuations) asNS increases (Figure 5a).There is a long
tail to the distribution. Structures contributing to the tail of the
distribution haveNS .. NS 5 61.7, whereNS is the average
number. We call these structures “highly designable” struc-
tures. The distribution is very different from the Poisson dis-
tribution (also shown in Figure 5a) that would result if the
compact structures were statistically equivalent. For a Poisson
distribution with a meanNS 5 61.7, the probability of finding
even one structure withNS . 120 is 1.763 1026.

The highly designable structures are, on average, thermody-

namically more stable than other structures. The stability of a
structure can be characterized by the average energy gapdS,
averaged over theNS sequences that design the structure. For a
given sequence, the energy gapdS is defined as the minimum
energy difference between the ground state energy and the
energy of a different compact structure. We find that there is a
marked correlation betweenNS and dS (Figure 5b). Highly
designable structures have average gaps much larger than those
of structures with smallNS, and there is a sudden jump indS for
structures withNS

c ' 1,400. This jump is a result of two
possible different kinds of ground state excitations. One is to
break an H™H bond and a P™P bond to form two H™P bonds,
with an (mixing) energy cost of 2EHP 2 EHH 2 EPP5 0.3. The
other is to change the position of an H-mer from relatively
buried to relatively exposed so the number of H-water bonds
(the lattice sites outside the 33 3 3 3 cube are occupied by
water molecules) is increased. This kind of excitation has an
energy$1. The jump in Figure 5b indicates that the lowest
excitations are of the first kind forNS , NS

c, but are a mixture
of the first and the second kind forNS . NS

c.
A striking feature of the highly designable structures is that

they exhibit certain geometrical regularities that are absent

Figure 5. (a) Histogram ofNS for the 33 3 3 3 system. (b) Average energy gap between the ground state and the first excited
state versusNS for the 33 3 3 3 system.

Figure 6. The top structure (a) and an ordinary structure withNS 5 1 (b) for the 33 3 3 3 system.

161J. Mol. Graphics Modell., 2001, Vol. 19, No. 1



from random structures and are reminiscent of the secondary
structures in natural proteins. Figure 6 shows the most design-
able structure along with a typical random structure. We ex-
amined the compact structures with the 10 largestNS values
and found that all have parallel running lines folded in a regular
manner.

We have also studied the model on a 2D lattice. We take
sequences of length 36 and fold them into compact 63 6
structures on the square lattice. There are 28,728 such struc-
tures unrelated by symmetries including the reverse-labeling
symmetry. In this case, we did not enumerate all 236 sequences
but randomly sampled them to the extend where the histogram
for NSs reached a reliable distribution. Similar to the 3D case,
theNSs have a very broad distribution (Figure 7a).In this case
the tail decays more like an exponential. The average gap also
correlates positively withNS (Figure 7b). Again, similar to the
3D case, we observe that the highly designable structures in 2D
also exhibit secondary structures. In the 2D 63 6 case, as the

surface-to-interior ratio approaches that of real proteins, the
highly designable structures often have bundles of pleats and
long strands, reminiscent ofa helices andb strands in real
proteins; in addition, some of the highly designable structures
have tertiary symmetries (Figure 8).

Lattice Model with MJ Matrix

For the 3D3 3 3 3 system and the 2D 63 6 system, the total
numbers of sequences are 2027 and 2036, respectively, which
are impossible to enumerate. So we randomly sampled the
sequence space. Similar to the case of the HP model,NSs have
a broad distribution in both 3D and 2D cases and theNS has a
positive correlation with the average gap. The data for the 63
6 system is shown in Figure 9. Furthermore, theNSs calculated
with the MJ matrix correlate well with the ones obtained from
the HP model (Figure 10). Thus the highly designable struc-
tures in the HP model are also highly designable in the 20-letter
model.e With 20 amino acids, there are few sequences that will
have exactly degenerate ground states. For example, in the case
of 3 3 3 3 3 about 96.7% of the sequences have unique ground
states. However, many of these ground states are almost de-
generate, in the sense that there are compact structures other
than the ground state with energies very close to the ground
state energy. If we require that for a ground state to be truly
unique there should be no other states of energies withingc

from the ground state energy, then the percentage of the se-
quences that have unique ground states is reduced to about 30%
and 8% forgc 5 0.4kBT andgc 5 0.8kBT, respectively.

We find similar results as in the lattice models; structures
differ drastically in their designability and that designability
correlates well with thermodynamic stability. In Figure 11 we
show the histogram ofNS for a 3-state model with a chain
length of 23. One of the interesting results, which can not be
seen in the simple lattice models we studied, is that some

eRecently, Buchler and Goldstein36,37 studied the designability for struc-
tures on a 53 5 lattice, using various alphabet sizes. They obtained very
poor or no correlation between theNS’s from our HP model and the “MJ”
model. The reason for this discrepancy is that they have used a different MJ
matrix (see footnotec).

Figure 7. Histogram ofNS (a), and the average energy gap between the ground state and the first excited state versusNS (b),
for the 2D 63 6 HP model.

Figure 8. The top structure for the 2D 63 6 system.
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natural protein motifs like the zinc finger are among the top
designable structures.

DISCUSSION

A number of questions arise: Among the large number of
structures, why are some structures highly designable? Why
does designability also guarantee thermodynamic stability?
Why do highly designable structures have geometrical regular-
ities and even symmetries? In this section we address these
questions by using a geometrical formulation of the protein
folding problem.16

Let us go back to Equation 2. To simplify the discussion, let
us consider only compact structures and letsi take only two
values: 0 and 1, depending on whether the amino acid is on the
surface or in the core of the structure, respectively. Therefore,
each compact structure can be represented by a string {si} of 0s
and 1s:si 5 0 if the ith amino acid is on the surface andsi 5
1 if it is in the core (see Figure 12a for an example on a lattice).
Let us make further simplification by using only two amino

acids:vi 5 H or P, and lethH 5 1 andhP 5 0. Thus, a sequence
{ vi} is also mapped into a string {si} of 0s and 1s:si 5 1 if vi

5 H, andsi 5 0 if vi 5 P. Let us call this model the PH (Purely
Hydrophobic) model. Assuming every compact structure of a
given size has the same numbers of surface and core sites and
noting that the term¥isi

2 is a constant for a fixed sequence of
amino acids and does not play any role in determining the
relative energies of structures folded by the sequence, Equation
(2) is then equivalent to16:

H 5 O
i51

N

~s i 2 si!
2. (3)

Therefore, the energy for a sequencesW 5 { si} folded onto
a structuresW 5 { si} is simply the distance squared (or the
Hamming distance in the case where both {si} and {si} are
strings of 0s and 1s) between the two vectorssW andsW.

We can now formulate the designability question geometri-
cally. We have two ensembles or spaces: one being all the

Figure 9. (a) Histogram ofNS; (b) average energy gap between the ground state and the first excited state versusNS, for the
2D 6 3 6 model with the MJ matrix. Data obtained with 3,995,000 random sequences.

Figure 10.NS from the HP model versusNS from the MJ
matrix for 2D 63 6 structures.

Figure 11. Histogram ofNS for a 3-state off-lattice model
with N 5 23.
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sequences {sW } and the other all the structures {sW}. Both are
represented byN-dimensional points or vectors whereN is the
length of the chain. The points of all the sequences are trivially
distributed in theN-dimensional space. In the case of the PH
model, the points representing sequences are all the vertices of
an N-dimensional hypercube (all possible 2N strings of 0s and
1s of lengthN). On the other hand, the points representing all
the structures {sW} have a very different distribution in the
N-dimensional space. ThesWs are constrainted and correlated.
For example, in the case of the PH model wheresi 5 0 or 1, not
every string of 0s and 1s actually represents a structure. In fact,
only a very small fraction of the 2N strings of 0s and 1s

correspond to structures. If we consider only compact struc-
tures where¥isi 5 nc with nc the number of core sites, then the
structure vectors {sW} cover only a small fraction of the vertices
of a hyperplane in theN-dimensional hypercube.

Now imagine putting all the sequences {sW } and all the
structures {sW} together in theN-dimensional space (see Figure
13 for a schematic illustration). (In a more general case it
would be simplest to picture if one normalizes {hW} and {sW} so
that 0 # hi, si # 1.) From Equation 3, it is evident that a
sequence will have a structure as its unique ground state only
if the sequence is closer (measured by the distance defined by
Equation 3) to the structure than to any other structures. There-
fore, the set of all sequences {sW (sW)} that uniquely design a
structuresW can be found by the following geometrical construc-
tion: draw bisector planes betweensW and all of its neighboring
structures in theN-dimensional space (see Figure 13). The
volume enclosed by these planes is called the Voronoi polytope
around sW. {sW (sW)} then consists of all sequences within the
Voronoi polytope. Hence, the designabilities of structures are
directly related to the distribution of the structures in the
N-dimensional space. A structure closely surrounded by many
neighbors will have a small Voronoi polytope and hence a low
designability; while a structure far away from others will have
a large Voronoi polytope and hence a high designability. Fur-
thermore, the thermodynamic stability of a folded structure is
directly related to the size of its Voronoi polytope. For a
sequencesW , the energy gap between the ground state and an
excited state is the difference of the squared distances between
sW and the two states (Equation 3). A larger Voronoi polytope
implies, on average, a larger gap as excited states can only lie
outside of the Voronoi polytope of the ground state. Thus, this
geometrical representation of the problem naturally explains
the positive correlation between the thermodynamic stability
and the designability.

As a concrete example, we have studied a 2D PH model of
6 3 6.16 For each compact structure, we divide the 36 sites into
16 core sites and 20 surface sites (see Figure 12a). Among the
28,728 compact structures unrelated by symmetries, there are
119 that are reverse-labeling symmetric (for a reverse-labeling

Figure 12. (a) A 63 6 compact structure and its corresponding string. A structure is represented by a stringsW of 0s and 1s,
according to whether a site is on the surface or in the core (which is enclosed by the dotted lines), respectively. Two structures,
related by the reverse-labeling symmetry, are shown, corresponding to the two opposite paths indicated by the two arrows.
ThesW of one structure is the reverse of the other. (b) The histogram ofNS for the 63 6 PH model obtained by using 19,492,200
randomly chosen sequences.

Figure 13. The sequence and structure ensembles in
N-dimension.
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symmetric structure,si 5 sN112i). So the total number of
structures a sequence can fold onto is (28,7282 119) 3 2 1
119 5 57,337, which map into 30,408 distinct strings. There
are cases in which two or more structures map into the same
string. We call these structures degenerate structures, and a
degenerate structure can not be the unique ground state for any
sequence in the PH model. Out of the 28,728 structures, there
are 9,141 nondegenerate structures (or 18,213 out of 57,337). A
histogram for the designability of nondegenerate structures is
obtained by sampling the sequence space using 19,492,200
randomly chosen sequences and is shown in Figure 12b. The
set of highly designable structures is essentially the same as
those obtained from the HP model discussed in the previous
section. To further probe how structure vectors are distributed
in the N-dimensional space, we measure the number of struc-

tures,nsW(d), at a Hamming distance,d, from a given structure
sW. Note that all the 57,337 structures are distributed on the
vertices of the hyperplane defined by¥isi 5 16. There are a
total ofC36

16 5 7,307,872,110 vertices in the hyperplane. If the
structure vectors were distributed uniformly on these vertices,
nsW(d) would be the same for all structures and would be:
n0(d) 5 rN(d), wherer 5 57,337/7,307,872,110 is the average
density of structures on the hyperplane andN(d) 5 C16

d/2C20
d/2

is the number of vertices at distance,d, from a given vertex. In
Figure 14,nsW(d) is plotted for three different structures with
low, intermediate, and high designabilities, respectively, along
with n0(d). We see that a highly designable structure typically
has fewer neighbors than a less designable structure, not only
at the smallestds but out tods of order 10–12. Also,nsW(d) is
considerably larger thann0(d) for small d for structures with
low designability. These results indicate that the structures are
very nonuniformly distributed and are clustered—there are
highly populated regions and lowly populated regions. A quan-
titative measure of the clustering environment around a struc-
ture is the second moment ofnsW(d),

g2~sW! 5 ^d2& 2 ^d&2 5 4 O
ij

sisjcij, (4)

where

cij 5 ^sisj& 2 ^si&^sj& (5)

and ^ z & denotes average over all structures.
What are the geometrical characteristics of the structures in

the highly populated regions and lowly populated regions,
respectively? Naively, the structures in the highly populated
regions are typical random structures that can be easily trans-
formed from one to another by small local changes. On the
other hand, structures in lowly populated regions are “atypical”
structures, which tend to be more regular and “rigid.” They
have fewer neighbors so it is harder to transform them to other
structures with only small rearrangements. One geometrical
feature of highly designable structures is that they have more
surface-to-core transitions along the backbone, i.e., there are
more transitions between 0s and 1s in the structure string for a

Figure 14. Number of structures versus the Hamming dis-
tance for three structures with low (circles), intermediate
(triangles), and high (squares) designability. Also plotted is
n0(d) (solid line).

Figure 15. (a) The number of transitions between surface and core sites vs.g for all the 6 3 6 compact structures. (b) The
number of transitions between surface and core site versus designability.
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highly designable structure than average (see Figure 15b).16,29

We found that the number of surface-core transitions in a
structure correlates well withg (Figure 15a). Thus, a highly
designable structure will have a smallg or a large number of
surface-core transitions.

A great advantage of the PH model is that it is simple
enough to test some ideas immediately. Two quantities often
used to characterize structures are the energy spectraN(E, sW)9,30

andN(E, sW, C).30 The first one is the energy spectrum of a given
structure,sW, over all sequences, {sW }:

N~E, sW! 5 O
$sW %

d@H~sW , sW! 2 E#. (6)

The second one is over all sequences of a fixed composition
C (e.g., fixed numbers of H-mers and P-mers in the case of
two-letter code), {sW } C:

N~E, sW, C! 5 O
$sW %C

d@H~sW , sW! 2 E#. (7)

It is easy to see that if two structure strings {si} and {si9} are
related by permutation, i.e.,si 5 ski

9, for i 5 1, 2,. . . , N, where
k1, k2, . . . , kN is a permutation of 1, 2,. . . , N, thenN(E, sW) 5
N(E, sW9) and N(E, sW, C) 5 N(E, sW9, C). Thus all maximally
compact structures have the same energy spectra Equations 6
and 7. Therefore, in the case studied here structures differ in
designability, not because they have different energy spectra
Equations 6 and 7 as speculated elsewhere,9,30but because they
have different neighborhoods in the structure space.

CONCLUSIONS

We have demonstrated with simple models that structures are
very different in terms of their designability and that high
designability leads to thermodynamic stability and “protein-
like” structural motifs. Highly designable structures emerge
because of an asymmetry between the sequence and the struc-
ture ensembles. A broad distribution of designability has also
been found in RNA secondary structures.31 However, the set of
all sequences designing a good structure, instead of forming a
compact Voronoi polytope like in proteins, forms a “neutral
network” percolating the entire space.31 It would be interesting
to study the similarities and differences of the two systems.
Finally, our picture indicates that the properties of the protein-
like sequences are intimately coupled to those of the proteinlike
(i.e., the highly designable) structures; the picture unifies var-
ious aspects of the two special ensembles. It also suggests that
understanding the emergence and properties of the highly des-
ignable structures is a key to the protein folding problem.
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