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focus here, the length of the chain ranges fref80 to ~400
amino acids. For these proteins, the surface-to-core ratio (the
number of amino acids on the surface of a protein over that in
the core) is of the order of unity. A protein can be folded (to its
native state) and unfolded (to a flexible open chain) reversibly
by changing the temperature, pH, or the concentration of some
denaturant in solution. The protein folding problem can be
traced back at least 70 years whenMfirst pointed out that
denaturation was in fact the unfolding of the protein from “the
regular arrangement of a rigid structure to the irregular, diffuse

It has been noted that natural proteins adapt only a limited
number of folds. Several researchers have investigated why
and how nature has selected this small nhumber of folds.
Using simple models of protein folding, we demonstrate
systematically that there is a “designability principle” be-
hind nature’s selection of protein folds. The designability of
a structure (fold) is measured by the number of sequences
that can design the structure—that is, sequences that pos-
sess the structure as their unique ground state. Structures

differ drastically in terms of their designability. A small arrangement of the flexible open chain.” A remarkable turning
number of highly designable structures emerge with a num- point came about 40 years ago when Anfi coworkers

ber of associated sequences much larger than the average. ; ; . o .
These highly designable structures possess proteinlike SeC_establlshed the so-called “thermodynamic hypothesis.” That is,

ondary structures, motifs, and even tertiary symmetries. In that for single domain proteins (1) the information coded in the

addition, they are thermodynamically more stable and fold &Min0 acid sequence of a protein completely determines its
faster than other structures. These results suggest that pro-fc’ldtaOI structure, and (2) the native state Is the global minimum
tein structures are selected in nature because they are of the free energy. These conclusions should be somewnhat

readily designed and stable against mutations, and that such SUrPrising to physicists. For the configurational ‘(free) energy
a selection simultaneously leads to thermodynamic landscape” of a heteropolymer of the size of a protein is

stability. © 2001 by Elsevier Science Inc. typically “rough,” in the sense that there are typically many
metastable states, some of which have energies very close to

Keywords: protein folding, lattice models, off-lattice mod- the global minimum. How could a protein always fold into its
els, enumeration, designability unique native state with the lowest energy? The answer is
evolution. Indeed, random sequences of amino acids are usu-
ally “glassy” and usually can not fold uniquely. But natural
INTRODUCTION proteins are not random sequences. They are a small family of

) ) ] ) ) _ sequences, selected by nature via evolution, and each has a
A protein consists of a chain of amino acids whose sequence isgjstinct global minimum that is well separated from other

determined by the information in DNA/RNA. An open protein - metastable states (Figure 1). One might ask: what are the
chain, under normal physiological conditions, will fold into & nique and yet common properties of this special ensemble of
three_—dlmensm_nal conflgur_atlon (the native _state) to performits proteinlike sequences? Can one distinguish them from other
function. For single domain globular proteins, which are our geq,ences without the arguably impossible task of constructing

the entire energy landscape? The answer lies in the heart of the
Corresponding author: C. Tang, NEC Research Institute, 4 Independenceduestion we introduce in the next paragraph and is the focus of
Way, Princeton, NJ 08540, USA. this discussion.

There are about 50,000-100,000 different proteins in the
N o _ human body, with a much larger number of natural proteins in
'Present address: Max Planck Institiv fGravitationsphysik, Albert-  the piological world. Protein structures are classified into dif-
Einstein-Institut, Schlaatzweg 1, 14473 Potsdam, Germany. ferent folds. Proteins of the same fold have the same major
?Present address: Department of Biochemistry and Biophysics, University secondary structures in the same arrangement with the same
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of California at San Francisco, San Francisco, CA 94143, USA. topological connectionswith some small variations typically
*Present address: Centre de Recherches sur lesbhsses tempatures in the loop region. In some sense, folds are distinct templates
(CRTBT), BP 166X, 38042 Grenoble @ex, France. of protein structures. Proteins with a close evolutionary relation
“Present address: Department of Physics, George Washington University,OfFer_‘ he_‘VQ_ high sequence similarity and share a common f0|d-
Washington, D.C. 20052, USA. It is intriguing that common folds occur even for proteins with
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Figure 1. The schematic energy landscapes of (a) a protein sequence and (b) a random sequence.

different evolutionary origins and biological functions. The low energy states. Govindarajan and Goldsgeirt suggested
number of folds is therefore much lower than the number of that a protein structure should fold fast. They studied the
proteins. Figure 2 shows the cumulative number of solved “foldability” of structures in a lattice model and found that the
protein domains along with the cumulative number of folds as optimal foldability varies from structure to structure. They

a function of the year. Itis increasingly less likely that a newly fyrther argued that structures with larger optimal foldability
solved protein structure would take a new fold. It is estimated should tolerate more sequences and be more robust to muta-
that the total number of folds for all natural proteins is only tjgns.

about 1,(37065;6 Some o_f thfe frequently observed folds, or “su- More recently, a “designability principle” was proposed as
pherfolo]!sid are shown 'g Figure 3. An;qor}g apparent feat(ljjres of hature's selection mechanism for protein structdfes. The
these folds are secondary structureglices andB strands), designability of a structure is defined as the number of se-

regularities, and symmetries. Therefore, as in the case of se'quences that can design the structure—that is, sequences that

uences, protein structures or folds are also a very special class, - . .
q Is therep anything special about natural prote?/n ?olds—are possess the structure as their unique ground state. With the use

they merely an arbitrary outcome of evolution or is there some of simple models, we have demonstrated that structures differ

fundamental reason behind their selection? This question hasdrastipally in their design.ability. A .sm.all number of structures
been addressed by a number of authors from different view- &€ highly designable while the majority of structures have low

points. One of the earliest attempts is by Finkelstein and designability. The highly designable structures also possess
coworkerse-10 They argued that certain motifs are easier to Other proteinlike features: thermodynamic stability, mutational
stabilize and thus more common, either because they havestability, _fast folding, regular secondary structures, and tertiary
lower (e.g., bending) energies or because they have unusuaPymmetries. Our results suggest that protein structures are
energy spectra over random sequences. Yue and: Dib- selected in nature because they are readily designed and stable
served in a lattice HP model that protein-like folds are associ- against mutations, and that such a selection simultaneously
ated with sequences that have minimal number of degeneratdeads to thermodynamic stability. In the rest of this study, we
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Figure 2. The cumulative numbers of PDB domains, (nonredundant) protein domains, and folds versus year. Sourte: SCO
and Chothig€ Courtesy of Dr. Steven Brenner.
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Figure 3. Representatives of some popular foglstrand is shown in darkg-helix in grey, and turns and loops in white.

give a brief review and summary for some of the work on H= E eA(r =), (1)
designability. i<i

whereA(r; — r;) = 1if r; andr; are adjoining lattice sites but
METHODS i andj are not adjacent in position along the sequence, and

We have used lattice and off-lattice models. For interacting A("i — rj) = 0 otherwise. Depending on the types of monomers

potentials between amino acids, we have used HP, solvation, orin contact, the interaction energy,, will be €., €.p, or epp,
Miyazawa-Jernigan matris:1° corresponding to HH, H-P, or P-P contacts, respectively (see

Figure 4)* We choose these interaction paramefeis satisfy
. the following physical constraints: (1) compact shapes have
HP Lattice Models lower energies than any noncompact shapes; (2) H monomers
The simplest model of protein folding is the so-called “HP are buried as much as possible, expressed by the retgion
lattice model,2°0-22whose structures are defined on a lattice
and whose sequences take only two "amino acids™ H (hydro- “The system is surrounded by water. The eneggyis the relative energy
phobic) and P (polar) (see Figure 4). The energy for a SEQUENCE ¢ (1 ming av — . contact in water. One can think &, = E,, + Espy —

folded i'_"to a structure is simply given by the short-range g - E,. Where theEs are “absolute” energies and the subscript
contact interactions denotes water molecules.
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Figure 4. A 3D lattice HP model. A sequence of H (dark disc) and P (light disc) (a) is folded into a 3D structure (b).

e,p > eyn, Which lowers the energy of configurations in which  Off-Lattice Models

Hs are hidden from water; and (3) different types of monomers ) ) -

tends to segregate, expressed By-2> eop + €. Conditions We haye also studied the.de5|gnablllty of structures for some
2 and 3 were derived from the analysisf the real protein data ~ ©ff-lattice models®> Following Park and Levitt? we use a
contained in the Miyazawa-Jernigan matiseof inter-residue ~ discrete set of dihedral angleg( s), i = 1, 2,---, n, to
contact energies between different types of amino acids. SincecOnstruct the structures. Side chains are represented by hard-
we consider only the compact structures, all of which have the core spheres centered aroung atoms. We use a form of
same total number of contacts, we can freely shift and rescaleSolvation energy as the energy function for a sequence folded
the interaction energies, leaving only one free parameter. In our ©Nto a structure:

study, we choose,, = —2.3,e4 = —1, andesp = 0 which

N
satisfy conditions 2 and 3 above. The results are insensitive to H= - sh )
the value ofe,, as long as both of these conditions are = v
satisfied” -

whereh, is the hydrophobicity of théth residuey; along the
Lattice Model with MJ Matrix chain ands is the degree of burial of thih residue in the

. structure. Equation 2 is essentially a solvation m&dal the
To ensure that our results are not an artifact of the HP model, residue levef

we have studied the lattice model (1) with 20 amino aéids.
this case the interaction energigs, wherev; can now be any
one of the 20 amino acids, are taken from the Miyazawa- RESULTS

Jernigan matrix. HP Lattice Model

bLi, Tang and Wingreen2 analysis of the interaction potential of amino We have studied the HP latlice model (1) on a three-
acids arrived ataforre,, — h, + h, + c(u, v), whereh,, is a measure of dlmenf;onal cubic Iattlcg and_ on a two-dimensional square
hydrophobicity of the amino acidy, andc is a small mixing term. The lattice** For the three-dimensional case, we analyze a chain
additive term, i.e., the hydrophobic force, dominates the potential. The composed of 27 monomers. We consider all the structures that
choice ofe,, = —2.3 in our study can be viewed as a result of a form a compact 3x 3 X 3 cube. There are a total of 51,704
hydrophobic part-2 plus a small mixing part 0.3. Several authors have g0y gtryctures unrelated by rotational, reflection, or reverse
investigated the effect of the mixing contribution as a small perturbation to . - 8 .
the additive potentiaf2-25 labeling symmetrie3-28For a given sequence, the ground state
°Note that there are two or more matrices in studies by Miyazawa and Structure is found by calculating the energies of all compact
Jernigart®1® We use the matrixg;, which is the matrix containing all  structures. We completely enumerate the ground states of all

interactions including the hydrophobic interaction. Other matrices have 927 possible sequences. We find that only 4.75% of the se
removed, to various degrees, the hydrophobic contribution (e.g., the matrix
g;" has removed the additive part and contains only the mixing term (see
footnoteP). Thus, using these modified MJ matrices without care may lead “Equation (2) can also be obtained by taking the mixing term of the
to very different and often unphysical results. equation in footnoté to zerol6:32-35
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Figure 5. (a) Histogram oNgfor the 3X 3 X 3 system. (b) Average energy gap between the ground state and the first excited
state versudNg for the 3 X 3 X 3 system.

quences have unique ground states and thus are potential pronamically more stable than other structures. The stability of a
teinlike sequences. We then calculate the designability of eachstructure can be characterized by the average energygap
compact structure. Specifically, we count the number of se- averaged over thHg sequences that design the structure. For a
guencesNg that have a given compact structuseas their given sequence, the energy géypis defined as the minimum
unique ground state. We find that compact structures differ energy difference between the ground state energy and the
drastically in terms of their designabilitiys. There structures  energy of a different compact structure. We find that there is a
can be designed by an enormous number of sequences, antharked correlation betweeNg and 85 (Figure 5b). Highly
there are “poor” structures that can only be designed by a few designable structures have average gaps much larger than those
or even no sequences. For example, the top structure can bef structures with smallg, and there is a sudden jumpdgfor
designed by 3,794 different sequencél & 3,794), while structures withNg ~ 1,400. This jump is a result of two
there are 4,256 structures for whity = 0. The number of possible different kinds of ground state excitations. One is to
structures having a givehlg decreases monotonically (with  break an HH bond and a PP bond to form two HP bonds,
small fluctuations) adlg increases (Figure 5ajhere is a long with an (mixing) energy cost of2,r — Eyy — Epp= 0.3. The
tail to the distribution. Structures contributing to the tail of the other is to change the position of an H-mer from relatively
distribution haveNg >> Ng = 61.7, whereNg is the average buried to relatively exposed so the number of H-water bonds
number. We call these structures “highly designable” struc- (the lattice sites outside the:3 3 X 3 cube are occupied by
tures. The distribution is very different from the Poisson dis- water molecules) is increased. This kind of excitation has an
tribution (also shown in Figure 5a) that would result if the energy=1. The jump in Figure 5b indicates that the lowest
compact structures were statistically equivalent. For a Poissonexcitations are of the first kind fdig < Ng°, but are a mixture
distribution with a meaNg = 61.7, the probability of finding of the first and the second kind fdig > Ng°.
even one structure witNg > 120 is 1.76x 10 A striking feature of the highly designable structures is that
The highly designable structures are, on average, thermody-they exhibit certain geometrical regularities that are absent

Figure 6. The top structure (a) and an ordinary structure with = 1 (b) for the 3X 3 X 3 system.
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Figure 7. Histogram ofg (a), and the average energy gap between the ground state and the first excited staté\vdigus

for the 2D 6 X 6 HP model.

from random structures and are reminiscent of the secondary
structures in natural proteins. Figure 6 shows the most design-
able structure along with a typical random structure. We ex-
amined the compact structures with the 10 lardéstalues

and found that all have parallel running lines folded in a regular
manner.

We have also studied the model on a 2D lattice. We take
sequences of length 36 and fold them into compack ®
structures on the square lattice. There are 28,728 such struc
tures unrelated by symmetries including the reverse-labeling
symmetry. In this case, we did not enumerate #is2quences
but randomly sampled them to the extend where the histogram
for Ngs reached a reliable distribution. Similar to the 3D case,
the Nss have a very broad distribution (Figure 7B this case

the tail decays more like an exponential. The average gap also

correlates positively witiNg (Figure 7b). Again, similar to the
3D case, we observe that the highly designable structures in 2D
also exhibit secondary structures. In the 2X& case, as the

Figure 8. The top structure for the 2D 8 6 system.
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surface-to-interior ratio approaches that of real proteins, the
highly designable structures often have bundles of pleats and
long strands, reminiscent ai helices andB strands in real
proteins; in addition, some of the highly designable structures
have tertiary symmetries (Figure 8).

Lattice Model with MJ Matrix

For the 3DX 3 X 3 system and the 2D 8 6 system, the total
numbers of sequences are?2@nd 2§, respectively, which

are impossible to enumerate. So we randomly sampled the
sequence space. Similar to the case of the HP mbdglhave

a broad distribution in both 3D and 2D cases andNgdas a
positive correlation with the average gap. The data for the 6

6 system is shown in Figure 9. Furthermore, bthg calculated

with the MJ matrix correlate well with the ones obtained from
the HP model (Figure 10). Thus the highly designable struc-
tures in the HP model are also highly designable in the 20-letter
model? With 20 amino acids, there are few sequences that will
have exactly degenerate ground states. For example, in the case
of 3 X 3 X 3 about 96.7% of the sequences have unique ground
states. However, many of these ground states are almost de-
generate, in the sense that there are compact structures other
than the ground state with energies very close to the ground
state energy. If we require that for a ground state to be truly
unique there should be no other states of energies wghin
from the ground state energy, then the percentage of the se-
guences that have unique ground states is reduced to about 30%
and 8% forg, = 0.4kgT andg, = 0.8gT, respectively.

We find similar results as in the lattice models; structures
differ drastically in their designability and that designability
correlates well with thermodynamic stability. In Figure 11 we
show the histogram oNg for a 3-state model with a chain
length of 23. One of the interesting results, which can not be
seen in the simple lattice models we studied, is that some

“Recently, Buchler and Goldstéf#7 studied the designability for struc-
tures on a 5x 5 lattice, using various alphabet sizes. They obtained very
poor or no correlation between thg's from our HP model and the “MJ”
model. The reason for this discrepancy is that they have used a different MJ
matrix (see footnoté).
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Figure 9. (a) Histogram oNg; (b) average energy gap between the ground state and the first excited state Ngréoisthe
2D 6 X 6 model with the MJ matrix. Data obtained with 3,995,000 random sequences.

natural protein motifs like the zinc finger are among the top acids:v; = H or P, and let,, = 1 andh, = 0. Thus, a sequence

{v;} is also mapped into a strings{} of Os and 1sig; = 1 if v,

= H, ando;, = 0if v, = P. Let us call this model the PH (Purely
Hydrophobic) model. Assuming every compact structure of a
given size has the same numbers of surface and core sites and
A number of questions arise: Among the large number of noting that the tern¥;o; is a constant for a fixed sequence of
structures, why are some structures highly designable? Whyamino acids and does not play any role in determining the
does designability also guarantee thermodynamic stability? relative energies of structures folded by the sequence, Equation
Why do highly designable structures have geometrical regular- (2) is then equivalent t6:
ities and even symmetries? In this section we address these
qguestions by using a geometrical formulation of the protein

designable structures.

DISCUSSION

folding problem?é

Let us go back to Equation 2. To simplify the discussion, let
us consider only compact structures andgetake only two

values: 0 and 1, depending on whether the amino acid is on the

surface or in the core of the structure, respectively. Therefore
each compact structure can be represented by a ssinof 0s

and 1s:5 = 0 if the ith

amino acid is on the surface agd=

1ifitisin the core (see Figure 12a for an example on a lattice).
Let us make further simplification by using only two amino

1000

800

600

Ng (MJ)

400

200 4

0
0

500 1000 1500 2000
Ng (HP)

Figure 10.Ng from the HP model versudg from the MJ
matrix for 2D 6 X 6 structures.

H=> (0 —s)2
i=1

3)

Therefore, the energy for a sequerice= {g;} folded onto
a structures = {s} is simply the distance squared (or the
"Hamming distance in the case where both}{and {s} are
strings of Os and 1s) between the two vectérands.

We can now formulate the designability question geometri-
cally. We have two ensembles or spaces: one being all the

Number of structures

100

10 -

Figure 11. Histogram ofNg for a 3-state off-lattice model
with N = 23,
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Figure 12. (a) A 6X 6 compact structure and its corresponding string. A structure is represented by a$ofr@s and 1s,
according to whether a site is on the surface or in the core (which is enclosed by the dotted lines), respectively. Two structure
related by the reverse-labeling symmetry, are shown, corresponding to the two opposite paths indicated by the two arrow
Thes of one structure is the reverse of the other. (b) The histograydor the 6 X 6 PH model obtained by using 19,492,200
randomly chosen sequences.

sequencesd} and the other all the structuresf{ Both are correspond to structures. If we consider only compact struc-
represented biX-dimensional points or vectors whekkis the tures where;s = n, with n. the number of core sites, then the

length of the chain. The points of all the sequences are trivially structure vectorsg cover only a small fraction of the vertices
distributed in theN-dimensional space. In the case of the PH of a hyperplane in th&-dimensional hypercube.
model, the points representing sequences are all the vertices of Now imagine putting all the sequences}{and all the
anN-dimensional hypercube (all possibl¥ &trings of 0s and structures §} together in theN-dimensional space (see Figure
1s of lengthN). On the other hand, the points representing all 13 for a schematic illustration). (In a more general case it
the structures § have a very different distribution in the  would be simplest to picture if one normalizes fand {3} so
N-dimensional space. Th& are constrainted and correlated. that 0= h, s = 1.) From Equation 3, it is evident that a
For example, in the case of the PH model whgre 0 or 1, not sequence will have a structure as its unique ground state only
every string of Os and 1s actually represents a structure. In fact,if the sequence is closer (measured by the distance defined by
only a very small fraction of the "2strings of Os and 1s  Equation 3) to the structure than to any other structures. There-
fore, the set of all sequences(§)} that uniquely design a
structures can be found by the following geometrical construc-
e © & & e tion: draw bisector planes betwegand all of its neighboring
structures in theN-dimensional space (see Figure 13). The
volume enclosed by these planes is called the Voronoi polytope
arounds. {o(39)} then consists of all sequences within the
e ® & & @ Voronoi polytope. Hence, the designabilities of structures are
s & ® 8 o directly related to the distribution of the structures in the
N-dimensional space. A structure closely surrounded by many
neighbors will have a small Voronoi polytope and hence a low
¢ & 8 & @ designability; while a structure far away from others will have
s & @ = 8 a large Voronoi polytope and hence a high designability. Fur-
thermore, the thermodynamic stability of a folded structure is
directly related to the size of its Voronoi polytope. For a
sequencer, the energy gap between the ground state and an
® & @ o o excited state is the difference of the squared distances between
s & 8 ® & @ ® ® ® & & @ ® © & @ ¢ and the two states (Equation 3). A larger Voronoi polytope
implies, on average, a larger gap as excited states can only lie
outside of the Voronoi polytope of the ground state. Thus, this
geometrical representation of the problem naturally explains

* —— sequence the positive correlation between the thermodynamic stability
q te struct and the designability.

O — non-degenerate structure As a concrete example, we have studied a 2D PH model of

o — degenerate structures 6 X 6.18 For each compact structure, we divide the 36 sites into

. ~ 16 core sites and 20 surface sites (see Figure 12a). Among the
Figure 13. The sequence and structure ensembles in28,728 compact structures unrelated by symmetries, there are
N-dimension. 119 that are reverse-labeling symmetric (for a reverse-labeling
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L s B B S B B tures,ng(d), at a Hamming distancel, from a given structure
| S. Note that all the 57,337 structures are distributed on the
vertices of the hyperplane defined Bys = 16. There are a
total of C5¢™® = 7,307,872,110 vertices in the hyperplane. If the
structure vectors were distributed uniformly on these vertices,
3 ng(d) would be the same for all structures and would be:
] n°(d) = pN(d), wherep = 57,337/7,307,872,110 is the average
] density of structures on the hyperplane aifd) = C,¢¥*C,,*?
i is the number of vertices at distanckfrom a given vertex. In
E Figure 14,n4(d) is plotted for three different structures with
low, intermediate, and high designabilities, respectively, along
with n°(d). We see that a highly designable structure typically
has fewer neighbors than a less designable structure, not only
at the smallestls but out tods of order 10-12. Alsong(d) is
considerably larger than®(d) for small d for structures with
L L4 low designability. These results indicate that the structures are
0 4 8 12 16 20 24 28 32 very nonuniformly distributed and are clustered—there are
d highly populated regions and lowly populated regions. A quan-
titative measure of the clustering environment around a struc-
ture is the second moment of(d),

Figure 14. Number of structures versus the Hamming dis-
tance for three structures with low (circles), intermediate
(triangles), and high (squares) designability. Also plotted is YA(3) = (d®) — (d)2 =4 > SiSCij, (4)
n°(d) (solid line). i

where

symmetric structures = Sy.;-i). So the total number of ¢ = () — (s)Xs) (5)
structures a sequence can fold onto is (28,72819) X 2 +

119 = 57,337, which map into 30,408 distinct strings. There and( - ) denotes average over all structures.

are cases in which two or more structures map into the same What are the geometrical characteristics of the structures in
string. We call these structures degenerate structures, and ahe highly populated regions and lowly populated regions,
degenerate structure can not be the unique ground state for anyespectively? Naively, the structures in the highly populated
sequence in the PH model. Out of the 28,728 structures, thereregions are typical random structures that can be easily trans-
are 9,141 nondegenerate structures (or 18,213 out of 57,337). Aformed from one to another by small local changes. On the
histogram for the designability of nondegenerate structures is other hand, structures in lowly populated regions are “atypical”
obtained by sampling the sequence space using 19,492,20Gstructures, which tend to be more regular and “rigid.” They
randomly chosen sequences and is shown in Figure 12b. Thehave fewer neighbors so it is harder to transform them to other
set of highly designable structures is essentially the same asstructures with only small rearrangements. One geometrical
those obtained from the HP model discussed in the previousfeature of highly designable structures is that they have more
section. To further probe how structure vectors are distributed surface-to-core transitions along the backbone, i.e., there are
in the N-dimensional space, we measure the number of struc- more transitions between 0s and 1s in the structure string for a
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Figure 15. (a) The number of transitions between surface and core sitgsfosall the 6 X 6 compact structures. (b) The
number of transitions between surface and core site versus designability.
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highly designable structure than average (see Figure 188b).

We found that the number of surface-core transitions in a

structure correlates well witly (Figure 15a). Thus, a highly
designable structure will have a smallor a large number of
surface-core transitions.

A great advantage of the PH model is that it is simple
enough to test some ideas immediately. Two quantities often

used to characterize structures are the energy spe(ra)°-2°

andN(E, §, C).3°The first one is the energy spectrum of a given

structure , over all sequencesgf:

N(E, 3) = >, 8[H(&, 3) — E]. (6)
{a}

The second one is over all sequences of a fixed composition
C (e.g., fixed numbers of H-mers and P-mers in the case of

two-letter code), §}c:

N(E, 8, C) = > §[H(5, 3 — EJ. (7)

{atc

It is easy to see that if two structure stringgfand {s'} are
related by permutation, i.es, = s‘q’, fori=1,2,---,N, where
Ky, ks, - - -, ky is @ permutation of 1, 2,- -, N, thenN(E, 3) =
N(E, §') andN(E, 8, C) = N(E, &, C). Thus all maximally

compact structures have the same energy spectra Equations 93
and 7. Therefore, in the case studied here structures differ in
designability, not because they have different energy spectra

Equations 6 and 7 as speculated elsewhétbut because they
have different neighborhoods in the structure space.

CONCLUSIONS

We have demonstrated with simple models that structures are
very different in terms of their designability and that high 16
designability leads to thermodynamic stability and “protein-
like” structural motifs. Highly designable structures emerge
because of an asymmetry between the sequence and the struct7
ture ensembles. A broad distribution of designability has also

been found in RNA secondary structufésiowever, the set of

all sequences designing a good structure, instead of forming a
compact Voronoi polytope like in proteins, forms a “neutral

network” percolating the entire spagelt would be interesting

to study the similarities and differences of the two systems.
Finally, our picture indicates that the properties of the protein-
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like sequences are intimately coupled to those of the proteinlike 19 Miyazawa, S., and Jernigan, R.L. Residue-residue po-

(i.e., the highly designable) structures; the picture unifies var-
ious aspects of the two special ensembles. It also suggests that
understanding the emergence and properties of the highly des-

ignable structures is a key to the protein folding problem.
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